
June 2000

NASA/CP-2000-210100

Lfm2000: Fifth NASA Langley Formal
Methods Workshop

C. Michael Holloway, Compiler
Langley Research Center, Hampton, Virginia

The NASA STI Program Office ... in Profile

Since its founding, NASA has been
dedicated to the advancement of
aeronautics and space science. The NASA
Scientific and Technical Information (STI)
Program Office plays a key part in helping
NASA maintain this important role.

The NASA STI Program Office is operated
by Langley Research Center, the lead center
for NASAÕs scientific and technical
information. The NASA STI Program Office
provides access to the NASA STI Database,
the largest collection of aeronautical and
space science STI in the world. The Program
Office is also NASAÕs institutional
mechanism for disseminating the results of
its research and development activities.
These results are published by NASA in the
NASA STI Report Series, which includes the
following report types:

· TECHNICAL PUBLICATION. Reports

of completed research or a major
significant phase of research that
present the results of NASA programs
and include extensive data or theoretical
analysis. Includes compilations of
significant scientific and technical data
and information deemed to be of
continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

· TECHNICAL MEMORANDUM.

Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

· CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

· CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored
or co-sponsored by NASA.

· SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

· TECHNICAL TRANSLATION. English-

language translations of foreign
scientific and technical material
pertinent to NASAÕs mission.

Specialized services that complement the
STI Program OfficeÕs diverse offerings
include creating custom thesauri, building
customized databases, organizing and
publishing research results ... even
providing videos.

For more information about the NASA STI
Program Office, see the following:

· Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

· E-mail your question via the Internet to

help@sti.nasa.gov

· Fax your question to the NASA STI

Help Desk at (301) 621-0134

· Phone the NASA STI Help Desk at
 (301) 621-0390

· Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

June 2000

NASA/CP-2000-210100

Lfm2000: Fifth NASA Langley Formal
Methods Workshop

C. Michael Holloway, Compiler
Langley Research Center, Hampton, Virginia

Proceedings of a workshop sponsored by the
National Aeronautics and Space

Administration and held at the Radisson
Fort Magruder Hotel & Conference Center

Williamsburg, Virginia
June 13-15, 2000

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

iii

General Chairman’s Message

On behalf of the NASA Langley Formal Method’s Team, I welcome you to Lfm2000, the Fifth
NASA Langley Formal Methods Workshop. When the series began in 1990, attendees and
presenters were limited to people directly involved in NASA Langley’s nascent formal methods
program. Subsequent workshops in 1992 and 1995 also restricted attendance to invited people. With
the 1997 workshop, we removed attendance restrictions, and also issued an international call for
papers. We continued this approach for Lfm2000.

We believe that the program has something to offer just about everyone, from those interested
in the theoretical aspects of formal methods to those interested in the practical application of formal
methods to help solve industrial problems. We hope that you agree, and that your time at the
workshop is both interesting and useful to you.

The paper copy of the proceedings contains the papers selected by the program committee for
presentation. The CD contains Portable Document Format (PDF) and (in many cases) PostScript
versions of the papers, supplementary information from some authors, tutorial slides and
supplementary material, and information about the NASA Langley formal methods program. Much
of this material will also be available on the world-wide web at the Lfm2000 web site at
<http://shemesh.larc.nasa.gov/fm/Lfm2000>.

Once again, welcome! I look forward to meeting you during the workshop. Please let me
know if there is anything that I can do to help you while you are here.

C. Michael Holloway, Lfm2000 General Chairman
email: <c.m.holloway@larc.nasa.gov>
postal address: Mail Stop 130, NASA Langley Research Center, Hampton VA 23681-2199

iv

v

Program Committee Chairman’s Message

Welcome to Lfm2000! We are pleased to be able to bring you a strong program of research
papers and experience reports. This year we added a tutorial track to complement the research
presentations. We were fortunate to receive several excellent tutorial proposals from some rather
accomplished presenters, so we hope you find this a valuable addition to the workshop format.

Following the organization we adopted at Lfm97, our previous workshop, we drew the bulk of
the Lfm2000 program from refereed submissions. We received 37 paper submissions, from which
17 papers were selected for presentation at the workshop and publication in the proceedings. Each
paper received at least three reviews, either by members of the Program Committee or by outside
referees. In addition to selected papers, we invited several speakers to give talks on trends and
perspectives, including presentations on ongoing NASA activities and interests.

Submissions to Lfm2000 showed a continued strong interest in the area of applied formal
methods. The diversity of submissions increased somewhat over our previous workshop in 1997.
Also evident in the accepted papers was a decided shift toward lighter weight methods and the
algorithmic analysis techniques typified by model checking. This trend reflects the growing interest
in finite state analysis that has been seen at other research meetings. It is too soon to tell, however,
whether this growth comes at the expense of interest in the deductive analysis methods. Perhaps
by the time of our next workshop we can gauge the community's directions more definitively.

I would like to thank members of the Program Committee for all their hard work in reviewing
and selecting papers for this year's program. Thanks are also due to the auxiliary referees who
contributed their time. Finally, let me thank the Organizing Committee for helping to give shape to
the finished product.

 I hope you find this a rewarding meeting. We welcome any feedback you might wish to
provide so that our next offering will be better still.

Ben Di Vito, Lfm2000 Program Chair
email: <b.l.divito@larc.nasa.gov>
postal address: Mail Stop 130, NASA Langley Research Center, Hampton VA 23681-2199

vi

vii

���
����

Organization

Program Committee
Ben Di Vito, NASA Langley Research Center, Chairman
Michael Holloway, NASA Langley Research Center, Executive Secretary
Ricky Butler, NASA Langley Research Center
Victor Carreño, NASA Langley Research Center
David Dill, Stanford University
Eric Engstrom, Honeywell Technology Center
David Guaspari, Odyssey Research Associates
Klaus Havelund, NASA Ames Research Center
Kelly Hayhurst, NASA Langley Research Center
Mats Heimdahl, University of Minnesota
Thierry Jéron, IRISA/INRIA
Chris Johnson, University of Glasgow
Steve Johnson, Indiana University
John Kelly, Jet Propulsion Laboratory
John Knight, University of Virginia
Mike Lowry, NASA Ames Research Center
Gerald Lüttgen, Institute for Computer Applications in Science and Engineering
Paul Miner, NASA Langley Research Center
César Muñoz, Institute for Computer Applications in Science and Engineering
C. R. Ramakrishnan, SUNY, Stony Brook
John Rushby, SRI International
Mark Saaltink, ORA Canada
Matt Wilding, Rockwell Collins
Secondary Reviewers: Mark Bickford, David Greve, Alain Le Guennec, Peter Habermehl,

Loïc Hélouët, Dimitri Naydich, Nicolas Roquette, Mahadevan Subramaniam

Tutorial Selection Committee
Ben Di Vito, NASA Langley Research Center, Chairman
Michael Holloway, NASA Langley Research Center
Ricky Butler, NASA Langley Research Center
Victor Carreño, NASA Langley Research Center
Kelly Hayhurst, NASA Langley Research Center
Gerald Lüttgen, Institute for Computer Applications in Science and Engineering
Paul Miner, NASA Langley Research Center
César Muñoz, Institute for Computer Applications in Science and Engineering

Organizing Committee
Michael Holloway, NASA Langley Research Center, Workshop General Chairman
Lisa Peckham, NASA Langley Research Center
Kelly Hayhurst, NASA Langley Research Center
Andrea Carden, Science and Technology Corporation

viii

ix

Table of Contents

General Chairman’s Message . iii

Program Committee Chairman’s Message . v

Lfm2000 Organization . vii

On Tableau Constructions for Timing Diagrams . 1
Kathi Fisler, Rice University

Abstraction Relationships for Real-Time Specifications . 13
Monica Brockmeyer, Wayne State University

Algebra of Behavior Tables . 23
Steven D. Johnson and Alex Tsow, Indiana University

Modeling and Validating Hybrid Systems using VDM and Mathematica 35
Bernhard K. Aichernig and Reinhold Kainhofer, Technical University Graz, Austria

Modeling the Fault Tolerant Capability of a Flight Control System: An Exercise in
SCR Specification . 47

Chris Alexander, Azimuth Inc.; Vittorio Cortellessa, Institute for Software Research;
Diego Del Gobbo, West Virginia University (WVU); Ali Mili, WVU; Marcello Napolitano,
WVU

Towards Formal Methods for Mathematical Modelling . 59
Ursula Martin, SRI International and University of St. Andrews

Timing Analysis by Model Checking . 71
Dimitri Naydich and David Guaspari, Odyssey Research Associates

Modeling and Verification of Real-Time Software Using Extended Linear Hybrid
Automata . 83

Steve Vestal, Honeywell Technology Center

Orpheus: A Self-Checking Translation Tool Arrangement for Flight Critical
Hardware . 95

David Greve and Matthew Wilding, Rockwell Collins; Mark Bickford and David Guaspari,
Odyssey Research Associates

FormalCORE™ PCI/32 - A Formally Verified VHDL Synthesizable PCI Core 105
Bhaskar Bose, M. Esen Tuna, and Ingo Cyliax, Derivation Systems, Inc.

x

Structuring Formal Control Systems Specifications for Reuse: Surviving Hardware
Changes . 117

Jeffrey M. Thompson, Mats P.E. Heimdahl, and Debra M. Erickson, University of
Minnesota

Automated V&V for High Integrity Systems, A Targeted Formal Methods
Approach . 129

Simon Burton, John Clark, Andy Galloway, and John McDermid, University of York

Integrating Z and Cleanroom . 141
Allan M. Stavely, New Mexico Tech

Applying Use Case Maps and Formal Methods to the Development of Wireless
Mobile ATM Networks . 151

Rossana M. C. Andrade, University of Ottawa

Formal Analysis of the Remote Agent Before and After Flight 163
Klaus Havelund, Recom Technologies; Mike Lowry, NASA Ames Research Center
(ARC); SeungJoon Park, RIACS; Charles Pecheur, RIACS; John Penix, ARC; Willem
Visser, RIACS; Jon L. White, Caelum

Taking the hol out of HOL . 175
Nancy A. Day, Oregon Graduate Institute; Michael R. Donat and Jeffrey J. Joyce,
Intrepid Critical Software Inc.

An Overview of SAL . 187
Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Muñoz, Sam Owre, Harald
Rueß, John Rushby, Vlad Rusu, Hassen Saïdi, N. Shankar, Eli Singerman, Ashish Tiwari,
SRI International

On Tableau Constructions for Timing Diagrams

Kathi Fisler

Department of Computer Science

Rice University

6100 S. Main, MS 132

Houston, TX 77005-1892

kfisler@cs.rice.edu

Abstract

Designers often cite unfamiliar notation as one obsta-
cle to wider acceptance of formal methods. Formal-
izations of design notations, such as timing diagrams,
promise to bridge the gap between design practice
and formal methods. How to use such formaliza-
tions e�ectively, however, remains an open question.
Developing new tools around design notations might
provide better support for reasoning at the level of
the preferred notations. On the other hand, trans-
lating the formalizations into established notations
enables leveraging o� of existing tools. This decision
of whether to treat design notations as interfaces de-
pends largely on computational tradeo�s. This paper
explores this issue in the context of specifying proper-
ties for automata-theoretic veri�cation using timing
diagrams. Automata-theoretic algorithms perform a
tableau construction to convert properties into B�uchi
automata. We contrast direct compilation of timing
diagrams into B�uchi automata with an approach that
uses linear-time temporal logic (LTL) as an interme-
diate language during translation. Direct compila-
tion generally produces much smaller automata and
scales signi�cantly better with variations in key tim-
ing diagram parameters. We attribute this to combi-
nation of a correspondence between timing diagrams
and weak automata and certain shortcomings in cur-
rent LTL-to-B�uchi algorithms.

1 Introduction

Computer-aided veri�cation uses techniques from
logic and mathematics to prove whether design mod-
els satisfy certain properties. Although these tech-
niques have been used successfully on several siz-
able examples, many designers are reluctant to adopt
them. One frequently cited problem is the notation
that veri�cation tools employ [9]. Veri�cation tech-
nologies are grounded in formal logic. Accordingly,
most tools use their underlying logics as property
speci�cation languages. For example, model checkers
employ temporal logics, while theorem provers use
various
avors of higher-order logic. In contrast, de-
signers use a wide array of notations, including circuit
diagrams, timing diagrams, state machines, VHDL
and Verilog. This rich array of representations, some
of them diagrammatic, stands in stark contrast to the
monolithic textual logics of veri�cation tools.

Bridging this gap requires veri�cation tools that
support notations that are more familiar to designers.
One approach is to develop new tools and algorithms
which support design notations directly [3]. Another
is to create interfaces from design notations to exist-
ing languages [1, 8]; this leverages o� existing tool
development e�orts.1 Which approach yields more
eÆcient algorithms is an open question. There may
exist algorithms for model checking timing diagrams,
for example, that outperform those for the temporal

1Many e�orts (other than those cited) are ad-hoc, however,
because they do not formalize the design notations.

logics into which we might translate timing diagrams.
Understanding these tradeo�s requires studies of the
logical nature of design notations and their role in
veri�cation algorithms.

This paper explores these tradeo�s in the context
of compiling timing diagrams to B�uchi automata.
Automata-theoretic veri�cation tools, which support
linear-time logics such as LTL, operate at the level
of automata. Using such tools on timing diagrams
requires algorithms for compiling timing diagrams to
B�uchi automata. We compare two compilation meth-
ods, one which compiles timing diagrams directly into
B�uchi automata and one which translates timing di-
agrams into LTL and then uses existing algorithms
for compiling LTL into B�uchi automata. Our results
show that the direct approach produces far smaller
machines even on simple examples. This appears due
to a combination of structural properties of the au-
tomata that capture timing diagrams and shortcom-
ings in existing LTL-to-B�uchi translation algorithms.

Section 2 presents an overview of automata-
theoretic veri�cation. Section 3 describes timing dia-
grams and linear-time temporal logic, the two nota-
tions used in this paper. Section 4 presents our algo-
rithms for compiling timing diagrams into LTL and
B�uchi automata. Section 5 presents an experimental
comparison of the two approaches to obtaining B�uchi
automata from timing diagrams. Section 6 discusses
the experimental results and their implications for
veri�cation research.

2 Automata-Based Veri�cation

Automata-theoretic veri�cation views both systems
and properties as �nite-state automata [12, 14]. Ver-
ifying whether a system satis�es a property is analo-
gous to asking whether the property automaton ac-
cepts the language generated by the system. In other
words, for a system S and a property P , veri�cation
reduces to a language containment question of the
form L(S) � L(P), where L denotes the language of
an automaton. This is equivalent to asking whether
L(S) \ L(P) = ;. In practice, automata-theoretic
veri�cation tools implement the latter; they intersect
the automaton for the negation of the property with

the automaton for the system and check whether the
language of the product automaton is empty.

Many other veri�cation problems can be expressed
in terms of operations on languages. Property de-
composition is one example. Properties often prove
intractable to verify because they require too many
computational resources, such as time or memory.
One can approach such cases by decomposing the
original property into a set of simpler properties, each
of which is tractable to verify. If the simpler prop-
erties collectively imply the original property, then
verifying each simple property independently is suf-
�cient to verify the original property. To support
decomposition, veri�cation tools must check whether
one set of properties implies another. If a property P
is decomposed into properties P1; : : : ; Pk , this check
reduces to L(P) � L(P1) \ : : : \ L(Pk).
Both of these checks are decidable for a large class

of veri�cation problems. Implementing them requires
procedures to obtain two kinds of automata: those
that accept the language of a given property and
those that accept the language of the negation of a
given property. This project investigates both prob-
lems in the context of timing diagrams.

3 Timing Diagrams and LTL

3.1 Timing Diagrams

Timing diagrams express patterns of value changes
on signals. In addition, they express precedence and
synchronization relationships between changes, and
timing constraints between changes. As part of our
overall research program, we have developed a logic
of timing diagrams [5]. This section describes the
portion of the logic that is relevant to this paper.

Figure 1 provides a sample timing diagram that
will serve as our running example. Variables a, b,
and c name boolean-valued signals. To the right of
each name is a waveform depicting how the variable's
value changes over time. For example, b transitions
from low to high, then later returns to low. We inter-
pret low as logical false and high as logical true. Ar-
rows indicate temporal ordering between transitions;
for this paper, we assume that timing diagrams spec-

[1,3]
>2[1,3]

a

b

c

p0 p1 p2 p4p3 p5 p6

a 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
b 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0
c 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

Figure 1: A timing diagram and an illustration of its semantics.

ify a total ordering on the transitions through arrows
and ordering within waveforms. Annotations of the
form [l; u] on the arrows indicate lower and upper
bounds on the time between the related transitions; l
is a natural number and u is a natural number or the
symbol 1.2 The labels at the bottom, referred to as
time points , are for explanatory purposes and are not
part of the timing diagram; intuitively, there is one
time point for each transition in the diagram, plus one
for each of the endpoints of the diagram. The portion
of the diagram between each pair of time points is an
interval; interval Ij spans from time point pj to pj+1.

Since timing diagrams express sequences of values
of variables over time, an appropriate semantic model
for them must do the same. Formal languages, which
are sets of sequences over a given alphabet, suggest
such a model. Our semantics considers �nite or in�-
nite words over an alphabet consisting of all possible
assignments of boolean values to the names labeling
waveforms. Intuitively, a word models a timing di-
agram when the transition patterns in the diagram
re
ect the changes in values assigned to names in the
word. A timing diagram language is any set of words
such that every word in the set models the timing di-
agram. This paper provides an intuitive description
of the semantics; the full details appear elsewhere [5].

Consider the timing diagram and word in Figure 1.

2The full logic supports richer bounds with variables [5].

The word appears in tabular form: the waveform
names label the rows and the indices into the word
label the columns. Each cell in the table indicates
the value on the corresponding signal at the corre-
sponding index. Symbols 0 and 1 denote false and
true, respectively. The two lines directly beneath the
table indicate two separate assignments of indices to
time points, as explained shortly.

Intuitively, the semantics walks along a word look-
ing for indices that satisfy each time point. An index
satis�es a time point if the values assigned to each
variable correspond to those required by the transi-
tions at the time point; satisfaction relies on both
the current index and its immediate successor. For
example, in Figure 1, time point p1 contains a rising
transition on signal a; index d satis�es p1 if d assigns
value 0 to a and index d+ 1 assigns value 1 to a.

For the word and timing diagram in Figure 1, in-
dex 0 satis�es the rising transition on a. The walk
now searches for an index containing a rising tran-
sition on b; index 1 meets this criterion. When the
walk locates the rising transition on c in index 2, the
semantics checks whether the located indices respect
the timing constraint between the transitions on b

and c. The two transitions occurred one index apart,
which is valid. Continuing the walk locates time point
p4 at index 3 and time point p5 at index 5. The �rst
row below the table shows this assignment of time

points to indices. The second row shows another as-
signment, starting from index 4. This walk fails, be-
cause the distance between the indices satisfying p2
and p4 is larger than 3, the maximum allowed by the
time bound on the arrow from the rising transition
on b to the falling transition on c. The semantics al-
ways checks the �rst occurrence of a transition that
it �nds once it begins searching for it. The formal
semantics [5] de�nes this precisely.
Three other aspects of our semantics are relevant:

� Timing diagrams express assume-guarantee re-
lationships; we specify some pre�x of the time
points as the assume portion, and only check the
entire diagram when we locate indices satisfying
the assume portion. In our example, taking the
assume portion to be time points p0 and p1, we
would search for the entire diagram only if an
index re
ects a rising transition on a.

� We view timing diagrams as invariants, mean-
ing that we attempt to satisfy the timing dia-
gram from every index which satis�es the assume
portion. In our example, we would search from
every index containing a rising transition on a,
namely indices 0 and 4, as in our demonstration.

� A parameter over the timing diagram indicates
which segments of waveforms should be matched
exactly within words; the rest are treated as
don't-cares. Segments to be matched exactly
are called �xed-level constraints. For example,
we could require a to remain high until the rising
transition on c by putting a �xed-level constraint
on a between time points p1 and p4.

Index satisfaction and �xed-level constraints are
simply constraints on the values of particular vari-
ables; each constraint is a conjunction of literals cap-
turing the values required on each variable. A �xed-
level constraint requiring a to be low and c to be high
would be the conjunction :a^c. The actual conjunc-
tions are irrelevant to the algorithms in the rest of the
paper. We therefore describe our algorithms in terms
of the following symbols:

� Ai: the �xed-level constraint in interval Ii.

� APiinit: the �rst index required to satisfy the
transition at time point i.

� APi: the second index required to satisfy the
transition at time point i.

� Ti: The conjunction APiinit ^ XAPi, which uses
the temporal logic next-time operator to capture
the requirements for satisfying a transition.

3.2 Linear-time Temporal Logic

Like timing diagrams, linear-time temporal logic de-
scribes patterns of changes in variables over sequences
of assignments. LTL is a propositional temporal
logic [13], de�ned relative to a �nite set of propo-
sitions P . The formulas of LTL include P and are
closed under unary operators : and X (next), and bi-
nary operators _ and U (until). Intuitively, X' says
that ' holds in the next state, while 'U says that '
holds in every state until holds, and eventually
holds. Other temporal operators, such as G (some-
thing holds in all states) are de�ned in terms of U.
Formally, LTL formulas are given semantics relative
to sequences of assignments to P . An in�nite word
� = x0x1 : : : is a sequence of elements of 2P . �i de-
notes the suÆx of � starting at xi. A word � models
formulas according to the following de�nition:

� � j= q i� q 2 x0, for q 2 P ,

� � j= :' i� not � j= ',

� � j= ' _ i� � j= ' or � j= ,

� � j= X' i� �1 j= ',

� � j= 'U i� there is an i � 0 such that �1 j=

and �j j= ' for all 0 � j < i.

A language models a formula i� every word in the
language models the formula.

4 Tableau Constructions

As discussed in Section 2, automata-theoretic veri�-
cation tools compile formulas into B�uchi automata.
As LTL model checking uses the automata-theoretic
framework, several algorithms exist for compiling

LTL formulas into B�uchi automata [2, 7]; these algo-
rithms use a technique called tableau construction.
The timing diagram semantics e�ectively de�ne a
B�uchi automaton accepting a timing diagram lan-
guage. Thus, we have two possible routes to compil-
ing timing diagrams into B�uchi automata, as shown
in the diagram below: compile the timing diagram
directly to a B�uchi automaton which corresponds to
the semantics, or translate the timing diagram into
LTL and use existing LTL-to-B�uchi algorithms. The
second approach re
ects the view of timing diagrams
as visual interfaces for temporal logics [1].

existing
algorithm

our
translation

Buchi
..

TD LTL

semantics

We would like to compare the B�uchi automata aris-
ing from these two approaches. Is one substantially
larger than the other? Size is important because this
form of veri�cation computes the cross-product of
the automata representing the design and the prop-
erty. Does one approach yield a B�uchi automaton
that is more amenable to veri�cation than the other?
Some veri�cation heuristics work only on property
automata with particular structural features. An-
swers to these questions help determine whether ver-
i�cation tools can safely treat timing diagrams as in-
terfaces to LTL expressions without having an ad-
verse e�ect on the veri�cation process.

Our translations from timing diagrams to each of
LTL and automata rely on the same intermediate rep-
resentation, a form of abstract state machine. States
in this machine record which interval they correspond
to, their transitions to other abstract states, and a
set of labels which provide information to the back-
end tools. The abstract machine captures one pass
or walk of the timing diagram semantics, leaving the
backend tools to support repetitions as necessary.

4.1 Generating the Abstract Machine

Generating an abstract machine from a given tim-
ing diagram proceeds in two steps. First, we need to

I1
1+

I2 I3
1 1
1 2
2 1

I4
2+

Figure 2: Step distribution tables for the example
timing diagram.

calculate the possible numbers of steps that a valid
word can spend in each interval. We partition the
time points into cells such that time points i and j

are in the same cell i� there is an arrow spanning
intervals i and j: for our example timing diagram,
the cells are f0g, f1g, f2; 3g, f4g, and f5g. For each
cell, we generate a table showing the possible combi-
nations of steps allowed in each interval. Each row
of the table provides one distribution of the time al-
lowed by the bounds across the corresponding inter-
vals; if the total amount of time is a lower bound,
the value in the last column of the table is marked
with a +. Figure 2 shows the tables for our example
diagram. They say that a valid word must contain at
least one letter in the �rst interval (1+ in the �rst ta-
ble), some combination of 2 or 3 letters in the interval
between time points 2 and 4 (the middle table), and
at least two letters in interval I4. We generate the
tables using a straightforward procedure for calculat-
ing distributions across variables. We then eliminate
distributions that violate some timing constraint; the
example diagram, for example, allows the arrow from
the rising transition on b to the rising transition on
c to last 3 steps, but doing so would violate the con-
straints of the edge from the rising transition on b

to the falling transition on c. The tables in Figure 2
contain no row allowing 3 steps in interval I2.

Next, we generate abstract states from the cells
and tables. Each abstract state contains the time
point it corresponds to, a set of transitions to other
abstract states, and a set of labels (which we de-
scribe shortly). We generate a �nal state (labeled
�nal) with a self-transition; this corresponds to the
maximal time point. We also generate two abstract
states with transition to the �nal state for each time
point in the assume portion: one labeled PM for pat-

assume
can
start
end

0

0

PM

can
start
end

1

must
end

2

can
start

3

can
start

2

must
end

3

start
cannot

4

start
end

must
3

can
end

4

start
end

must
5

final

Figure 3: The abstract machine for the example timing diagram.

tern mismatches and one labeled CV for constraint
violations; these capture violations of the timing dia-
gram patterns in the assume portion. The generation
method processes the cells in reverse order. For each
cell, we generate a set of states, designating one as the
initial state for the cell, as follows. If there is no table
for the cell, we generate one abstract state with two
transitions: one to itself and one to the initial state
for the cell containing the next time point. If the time
point is in the assume portion, the abstract state also
contains a transition to the pattern-mismatch state
for the corresponding time point.

If there is a table for a cell, we must generate se-
quences of states that count steps in the intervals as
indicated in the tables. Rather than generate these
sequences independently, however, we share states at
the pre�xes of the sequences when possible. All se-
quences will share at least one common pre�x state;
this is the initial state for the cell. For the exam-
ple timing diagram, all rows for cell f2; 3g require at
least one state in interval 2. Each state contains a
transition to the next state in the sequence; states
in common pre�xes may have transitions to multiple
suÆxes. In addition, if the last entry in a row is an-
notated with +, the �nal state in the sequence for
the row contains a self-loop. If the cell is in the as-
sume portion, each state also contains transitions to
the pattern-mismatch and constraint-violation states
for the corresponding time points. Figure 3 shows
the abstract machine corresponding to our example
timing diagram. We have explained the structure of
this machine; we now describe the labels.

Each state corresponding to a time point in the

assume portion receives the label assume. For each
state other than the �nal, pattern-mismatch, and
constraint-violation states, we add all labels from the
following list for which the state satis�es the indi-
cated constraints relative to the structure of the tran-
sition system; let B be a state at time point pi:

� start: no other state for time point pi reaches B;

� end: B reaches no other state for time point pi;

� can: B has successors for time points pi and pi+1;

� cannot: all successors are for time point pi;

� must: no successor is for time point pi.

The labels start and end indicate the �rst and last
states for each corresponding time point; can, cannot,
and must indicate whether a word can, cannot, or
must advance to the next time point from this state.
While some of these labels have overlapping meaning
(all must states are end states, for example), no two
labels are equivalent.

4.2 Generating LTL

This section generates an LTL formula corresponding
to one pass of the timing diagram semantics. Wrap-
ping the formula in LTL operator G yields the invari-
ant formula. The procedure follows the structure of
the abstract machine. There are two steps in gener-
ating the LTL for a given abstract state: generating
the propositional expression that captures the �xed-
level constraints for the state and connecting this ex-
pression with those for other states using temporal

([(A0 ^ :T0) U (A0 ^ T0)]!
[(A0 ^ :T0) U
(A0 ^ T0 ^
X[(A1 ^ :T1) U
(A1 ^ T1 ^ X((A2 ^ T2 ^ X((A3 ^ T3 ^ X(A4 ^ :T4 ^ X[(A4 ^ :T4) U (A4 ^ T4)])) _

(A3 ^ :T3 ^ X(A3 ^ T3 ^ X(A4 ^ :T4 ^ X[(A4 ^ :T4) U (A4 ^ T4)]))))) _
(A2 ^ :T2 ^ X(A2 ^ T2 ^ X(A3 ^ T3 ^ X(A4 ^ :T4 ^ X[(A4 ^ :T4) U (A4 ^ T4)]))))))])])

Figure 4: LTL generated for example timing diagram

operators. The expression for a state is the �xed-
level constraint Ai; if the state is the �rst or last in
a time point, we conjoin Ai with APi or APi+1init,
respectively. The temporal operators are based on
the transition structure of the abstract machine.
Formally, procedure GenLTL(B) produces the LTL

for abstract state B as follows, where R is the tran-
sition relation of the abstract machine. For abstract
states B without self-loops, GenLTL(B) produces

Ai ^ Ti ^
_

B02R(B)

X(GenLTL(B0)):

For abstract states B with self loops, GenLTL(B) is

[(Ai ^ :Ti) U (Ai ^ Ti ^
_

B02R(B)

X(GenLTL(B0)))]:

The Ti's require the expression to match the �rst
available transition to the next time point. To handle
the assume portion, the algorithm generates LTL for
the restriction of the abstract machine to the assume
portion and forms an implication from this formula to
the LTL for the entire diagram. This follows the in-
tuitive semantics of timing diagrams. Figure 4 shows
the resulting LTL for our running example. The con-
trast between the formula and the original timing dia-
gram motivates designers' frustrations with common
veri�cation notations.

4.3 Generating B�uchi Automata

A B�uchi automaton is a tuple hQ; q0; R; L;Fi where
Q is a set of states, q0 is the initial state, R � Q�Q
is the transition relation, L indicates propositions

that are true in each state, and F � Q is a set
of fair states. The abstract machine resembles a
B�uchi automaton; however, it does not capture a
timing diagram because it does not enforce match-
ing the �rst occurrences of transitions. The B�uchi
automaton states enforce this by examining proposi-
tions APi+1init and APi+1, which indicate when tran-
sitions should occur. These states also refer to the
�xed-level constraint Ai.

Monitoring APi+1init and APi+1 implies that an
abstract state can expand into four B�uchi states (Ai
must hold in each; the pattern-mismatch states ac-
count for when Ai does not hold). The number may
be more or less depending on the abstract state's
labels. Regardless of the labels, only a few com-
binations of propositions arise in practice. Table 1
(left) lists templates of the generated B�uchi states.
For each state, we list the propositions that are true
in that state and a set of labels. These labels are
not part of the B�uchi automaton; the algorithm uses
them to create transitions between states. The labels
can be divided into two sets, depending upon whether
they contain this; we explain the distinction shortly.

The B�uchi automaton generator converts abstract
state B into B�uchi automaton states b1; : : : ; bm in
two steps. First, it creates the template states indi-
cated in Table 1 (right). Second, it adds the outgoing
transitions for each bk. These outgoing transitions
depend on B's labels and whether bk outputs propo-
sition APi+1init. This proposition matters because
it indicates that bk could recognize the start of the
next time-point. Any transitions from bk to states
outputting proposition APi+1 must be to states cor-
responding to the next time-point.

Propositions Incoming Labels
S1 Ai, APi+1init, APi+1 this-tp, this-tp-trans
S2 Ai, :APi+1init, APi+1 this-tp, this-tp-trans
S3 Ai, APi+1init, :APi+1 this-tp, this-tp-no-trans
S4 Ai, :APi+1init, :APi+1 this-tp, this-tp-no-trans
S5 Ai, APi+1init, APi tp-start

S6 Ai, :APi+1init, APi tp-start

S7 :APi cv-no-trans

S8 Ai, APi cv-trans

S9 :Ai pv-this

S10 :Ai, APi pv-on-trans

S11 :Ai, :APi pv-this-no-trans

S12 �nal

Type Start? States
cannot yes S5, S6
cannot no S1, S2, S3, S4
must yes S5 plus this-tp label
must no S1, S3
can yes (ex. p0) S1, S2, S3, S4, S5, S6
can no or p0 S1, S2, S3, S4
CV S7, S8
PM S9, S10, S11
�nal S12

Table 1: Tables de�ning translation of abstract states to B�uchi states.

Next
Type Init? Outgoing Labels
can yes tp-start, this-tp-no-trans

pv-this-no-trans, pv-on-trans
can no this-tp pv-this

cannot yes this-tp-no-trans, pv-this, cv-trans
cannot no this-tp, pv-this, cv-trans
must tp-start, pv-on-trans, cv-no-trans

Table 2: Determining transitions between states.

More speci�cally, we connect the transitions for bk,
generated from abstract state B, according to the fol-
lowing algorithm: Let c1; : : : ; cn be the states that
expand all successors of B in the abstract machine.
Let hk be the set of labels for bk according to Ta-
ble 2. For each cj , add a transition from bk to cj i�
cj comes from the same (resp. a di�erent) time point
as bk and the incoming labels for cj contain some
this (resp. non-this label) label from hk. The fair
states consist of the state labeled �nal and all states
expanding abstract states labeled assume.

As an example, let B be the rightmost abstract
state for time point 4 from Figure 3. The following
diagram shows the expansion. The four states in the
dashed box correspond to B. Table 1 (right) tells
us to create these states because B matches the sec-
ond can line. State S5 expands the abstract state for

time point 5; we include it to illustrate the transition
connection procedure.

S2 S1

S3S4

S5

Tables 1 and 2 determine the outgoing transitions
for each state in the dashed box. For example, S3
matches the �rst row in Table 2 because B has label
can and S3 outputs APi+1init. Thus, it needs a tran-
sition to each state in the dashed box with incoming
label this-tp-no-trans (states S3 and S4 by Table 1
(left)) and each state outside the box with label tp-
start (state S5). We ignore the pv labels since there
are no PM states for time points 4 or 5. A similar
process yields the transitions for the remaining states.

Having presented algorithms for translating timing
diagrams to both LTL formulas and B�uchi automata,
we need to check whether the derived formulas and
automata correspond on a logical level. Given a tim-
ing diagram D, let DLTL and DBA be the formula
and automaton derived for D, respectively. We have
proven that L(DBA) modelsDLTL according to LTL's
semantics. As a sanity check on this result, we con-
structed an LTL formula capturing the structure of
DBA and compared it to DLTL using an LTL equiv-
alence checker [10]. These formulas are equivalent

for a large test suite of timing diagrams, including
those used in our experiments. Thus, we have high
con�dence in the correctness of our translations.

5 Experimental Results

This section compares our DBA automata to those
derived from DLTL using an existing LTL-to-B�uchi
translation algorithm [2] with respect to their num-
bers of states. We do not report running times be-
cause the algorithms have been implemented in dif-
ferent paradigms, which reduces the value of such
�gures; in practice, the direct translations were sub-
stantially faster than the LTL-based translations. We
report two groups of experiments. In the �rst, we
generate automata for one pass of the timing diagram
semantics. In the second, we generate automata for
the negation of timing diagrams when treated as an
invariant. The latter is required to model check tim-
ing diagrams using an automata-theoretic approach.

When comparing how each approach scales with re-
spect to a given timing diagram, there are two classes
of parameters to consider: the values of the lower and
upper time bounds on the edges and the size of the as-
sume portion. While the bounds certainly a�ect the
size of the resulting automata, we conjecture that the
size of the assume portion will be more signi�cant.
Consider the structure of DLTL. As Figure 4 shows,
the subexpression for the assume portion appears on
both sides of the implication in the LTL formula.
LTL-to-B�uchi algorithms normalize formulas before
translation: the normalization process will destroy
the similarities between the two copies of the assume
portion. Our timing diagram to automaton algo-
rithm, in contrast, translates the assume portion only
once. Our experiments use Daniele, Giunchiglia, and
Vardi's LTL-to-B�uchi algorithm, which yields more
compact automata than other algorithms [2].

5.1 Accepting Timing Diagrams

As an initial experiment, consider a very simple dia-
gram with an empty (trivial) assume portion. The
table shows the number of states in the DBA au-
tomaton (column \DBA") and the number of states

obtained compiling DLTL to an automaton (column
\via DLTL"). The �rst two columns vary the bounds.
Each automaton sees constant growth with respect to
increases in the time bounds. This supports our hy-
pothesis that the magnitude of the bounds does not
yield signi�cant di�erences between the two trans-
lation algorithms. Similar experiments on diagrams
with more transitions show similar results: while the
magnitude of the constant di�erence between the two
machines increases slightly on these examples, the
di�erences are still small constants when the assume
portion is empty.

[l,u]
a

b

l u DBA via DLTL

1 1 7 9
2 2 10 12
3 3 14 16
4 4 18 20

1 1 12 17
2 1 12 16
3 1 16 20
4 1 20 24

The picture changes dramatically as the assume
portion grows beyond one transition. Consider a di-
agram with four transitions, as shown below. Each
group of three experiments uses the same bounds and
varies the assume portion size. The di�erence be-
tween assume portion sizes of one and two is substan-
tial in each group. Furthermore, as the bounds in the
assume portion grow, this di�erence appears to grow
exponentially. Growth of each automaton still ap-
pears constant across experiments with the same as-
sume portion size and varying bounds. This supports
our hypothesis that the size of the assume portion is
more important than the size of the bounds. The size
of the bounds appear to matter more in the assume
portion than in the non-assume portion. This makes
sense, as the LTL-to-B�uchi algorithm negates the as-
sume portion to construct the automaton. This nega-
tion creates many disjunctions, which lead to branch-
ing and extra states in the LTL-to-B�uchi translation.
The larger the bounds, the more disjunctions result
from the assume portion.

a

b

c

[l1,u1]

[l2,u2]

[l3,u3]

d

l1 u1 l2 u2 l3 u3 Split DBA DLTL

1 1 1 1 1 1 0 9 9
1 1 1 1 1 1 1 11 25
1 1 1 1 1 1 2 12 119

1 1 2 2 2 2 0 15 13
1 1 2 2 2 2 1 17 29
1 1 2 2 2 2 2 18 123

1 1 3 3 3 3 0 23 19
1 1 3 3 3 3 1 25 35
1 1 3 3 3 3 2 26 129

2 2 1 1 1 1 0 12 11
2 2 1 1 1 1 1 14 27
2 2 1 1 1 1 2 16 319

2 2 2 2 2 2 0 18 15
2 2 2 2 2 2 1 20 31
2 2 2 2 2 2 2 22 323

3 3 1 1 1 1 0 16 14
3 3 1 1 1 1 1 18 30
3 3 1 1 1 1 2 20 666

The LTL-to-B�uchi approach produces smaller au-
tomata than our approach in some cases when the
assume portion is empty. We believe this is due to
a slight di�erence in how we handle relationships be-
tween the symbolic propositions (Ai, etc) in the two
algorithms that would favor the LTL-based approach.

5.2 Rejecting Timing Diagrams

Model checkers require an automaton accepting the
negation of a property. Even though we cannot draw
the negation of a timing diagram as a timing dia-
gram, we can still produce an automaton that ac-
cepts all words that fail to satisfy the timing diagram.
This section compares these automata to those ob-
tained for the expression :GDLTL. We present two
tables: the �rst summarizes experiments on the sin-
gle transition diagram from the previous section and
the second summarizes experiments on the two tran-

sition diagram. As an experiment in how the place-
ment of temporal operators a�ects the construction
of automata from LTL formulas, the �rst table in-
cludes an additional column, \Distrib", for which we
distributed all X operations in DLTL formula over
boolean operators before compiling to an automaton.

l u Split DBA via DLTL Distrib
1 1 0 7 112 199
2 2 0 10 310 588
3 3 0 14 654 1506
4 4 0 18 1307 3077
5 5 0 22 2613 6153

1 1 0 12 295 295
2 1 0 12 382 772
3 1 0 16 705 1596

1 8 0 34 14599 24926
2 8 0 34 14632 25055
3 8 0 34 14728 25461

1 1 1 9 117 210
2 2 1 12 315 599
3 3 1 16 659 1519
1 1 1 14 300 300
2 1 1 14 387 781

l1 u1 l2 u2 Split DBA via DLTL

1 1 1 1 0 8 650
2 2 2 2 0 14 5372
3 3 3 3 0 22 24174

1 1 1 1 0 18 4999
2 1 1 1 0 18 6369
2 1 2 1 0 18 8286

1 1 1 1 1 10 655
1 1 1 1 2 11 658
1 1 1 1 1 20 5004

In these tables, the di�erence between the two algo-
rithms is striking. The direct translation still shows
linear growth as we vary the bounds under a trivial
assume portion. For the �rst section of the �rst table,
the LTL-based algorithm shows exponential growth.
The di�erence between zero and one transitions in the
assume portion is not signi�cant for either algorithm
in the �rst table. Unfortunately, we were unable to

generate the LTL-based automata for larger con�gu-
rations than those shown within a reasonable amount
of time (several hours per construction). However,
the existing results are suÆcient to demonstrate the
drawbacks of the LTL approach to compiling timing
diagrams into automata.

6 Discussion

The data in Section 5 suggest clear di�erences be-
tween our two approaches for compiling timing dia-
grams into B�uchi automata. These di�erences could
be due to the LTL-to-B�uchi automaton translation,
to our timing diagram to LTL translation, or to some
property of timing diagrams that provides an inher-
ent advantage over LTL.

LTL-to-B�uchi algorithms are not canonical, in that
they may produce di�erent automata for logically
equivalent LTL formulas; the Distrib experiments in
the previous section show this. The Daniele et al.

algorithm produces smaller automata than other al-
gorithms because it uses some simple syntactic op-
timization techniques on propositional formulas [2].
More work should be done in this area; our timing
diagrams research has yielded several formulas where
simple manual transformations yielded much smaller
automata from the Daniele et al. algorithm. Algo-
rithms which perform optimizations across temporal
operators are also needed, as our experiments show.

Currently, no known metrics indicate when one
LTL formula will yield a smaller automaton than
another. Therefore, it is possible that a di�erent
translation from timing diagrams to LTL would yield
smaller automata. For several timing diagrams, we
have tried to manually construct LTL formulas that
yield our DBA automata. We have been successful
on occasion by translating the structure of DBA into
LTL. We are still working on such a translation pro-
cedure that acts as a �xpoint over B�uchi automata,
as a means of understanding the LTL-to-B�uchi algo-
rithms better. However, this approach is clearly re-
dundant in practice, as it requires the construction of
DBA. We continue to experiment with other timing
diagram to LTL translation algorithms, particularly
ones which enable sharing of the assume portion.

This project is part of a larger investigation into
whether timing diagrams o�er any computational
bene�ts over existing logics (including LTL) in veri-
�cation contexts [4]. We have identi�ed several dif-
ferences between the two notations. Full timing di-
agrams and LTL have incomparable expressive pow-
ers [5] (this paper uses only a subset of timing di-
agrams). Timing diagrams enable sharing of com-
mon subexpressions to a greater extent than LTL.
The LTL formula in Figure 4, for example, dupli-
cates subexpressions across its disjuncts; these ex-
pressions correspond to entire suÆxes of the timing
diagram. LTL does not appear to provide a way to
avoid this duplication. However, it is not yet clear
whether these duplicated expressions contribute to
the explosion in the generated B�uchi automata.

The most interesting distinction that we've discov-
ered between timing diagrams and LTL arises from
the structure of the B�uchi automata corresponding to
each notation. Our timing diagram to B�uchi trans-
lation always produces a particular structure of au-
tomaton known as a weak automaton [11]. An au-
tomaton with states Q and fair set F is weak if there
exists a partition of Q into disjoint sets Q1; : : : ; Qn

such that (1) each Qi is either contained in F or is
disjoint from it, and (2) the Qi's are partially ordered
so that there is no transition from Qi to Qj unless
Qi � Qj . Weak automata have several attractive
features in the context of veri�cation [11]; for exam-
ple, symbolic cycle detection is e�ectively linear in
weak automata, whereas existing algorithms for the
general case are quadratic [6].

Another feature of weak automata is important to
our study of timing diagrams: complementation of
weak automata requires only complementation of the
fair set F ; the structure of an automaton and its
complement are otherwise identical. In Section 5, we
explored translations of timing diagrams and their
negations to B�uchi automata. Our direct translation
produces the same size automaton for a given timing
diagram under each experiment because we exploit
this feature of weak automata.3 LTL-to-B�uchi algo-
rithms do not currently consider weak automata; this
is an open problem as many LTL formulas do not cor-

3We require one extra transition to handle the invariant.

respond to weak automata. When we use LTL as an
intermediate language, the B�uchi automata for the
negated timing diagrams are much larger than in the
non-negated case. This is partly due to the struc-
ture of the LTL formulas corresponding to timing
diagrams. As Figure 4 shows, LTL formulas corre-
sponding to timing diagrams involve disjunctions of
long sequences of conjunctions and temporal opera-
tors. The negation of such a formula contains many
more disjunctions than the original formula. Disjunc-
tions force branching and extra states in B�uchi au-
tomata. It is therefore not surprising that the au-
tomata for the negated timing diagrams are so much
larger than those for the one-pass timing diagrams.
In summary, many factors in
uence the size of the

automata obtained when treating timing diagrams
as an interface to LTL. These factors suggest a host
of research problems in veri�cation. We fully ex-
pect that improved LTL-to-B�uchi algorithms would
reduce the sizes of automata generated in our exper-
iments. Until researchers develop such algorithms,
however, direct compilation of timing diagrams to
B�uchi automata appears a better approach for veri-
�cation applications.

References

[1] Damm, W., B. Josko and R. Schl�or. Speci�-
cation and veri�cation of VHDL-based system-
level hardware designs. In Egon B�orger, edi-
tor, Speci�cation and Validation Methods, pages
331{409. Oxford Science Publications, 1995.

[2] Daniele, M., F. Giunchiglia and M. Y. Vardi. Im-
proved automata generation for linear temporal
logic. In Proc. 11th International Conference on

Computer-Aided Veri�cation. 1999.

[3] Dillon, L., G. Kutty, L. Moser, P. Melliar-Smith
and Y. Ramakrishna. A graphical interval logic
for specifying concurrent systems. Technical re-
port, UCSB, 1993.

[4] Fisler, K. Diagrams and computational eÆcacy.
In review, Proc. of the CSLI Workshop on Logic,
Language, and Information, October 1999.

[5] Fisler, K. Timing diagrams: Formalization and
algorithmic veri�cation. Journal of Logic, Lan-

guage, and Information, 8:323{361, 1999.

[6] Fisler, K., R. Fraer, G. Kahmi, M. Y. Vardi and
Z. Yang. A new symbolic cycle detection algo-
rithm. In preparation, March 2000.

[7] Gerth, R., D. Peled, M. Y. Vardi and P. Wolper.
Simple on-the-
y automatic veri�cation of linear
temporal logic. In Proceedings of Protocol Spec-

i�cation, Testing, and Veri�cation, pages 3{18,
August 1995.

[8] Grass, W. et al. Transformation of timing dia-
gram speci�cations into VHDL code. In Proceed-
ings of Computer Hardware Description Lan-

guages and Their Applications, pages 659{668,
August 1995.

[9] Heitmeyer, C. On the need for 'practical' for-
mal methods. In Proc. 5th Intl. Symposium on

Formal Techniques in Real-Time and Real-Time

Fault-Tolerant Systems, pages 18{26. Springer-
Verlag, 1998.

[10] Janssen, G. PTL: A propositional logic
tautology checker. Available online from
http://www.ics.ele.tue.nl/es/research/fv/

research/research index.shtml.

[11] Kupferman, O. and M. Y. Vardi. Freedom,
weakness, and determinism: From linear-time to
branching-time. In International Conference on

Logic in Computer Science, 1998.

[12] Kurshan, R. P. Computer-Aided Veri�ca-

tion of Coordinating Processes: The Automata-

Theoretic Approach. Princeton University Press,
1994.

[13] Pnueli, A. The temporal semantics of concurrent
programs. Theoretical Computer Science, 13:45{
60, 1981.

[14] Vardi, M. Y. and P. Wolper. An automata-
theoretic approach to automatic program veri-
�cation. In Proceedings of the First IEEE Sym-

posium on Logic and Computer Science, 1986.

Abstraction Relationships for Real-Time Speci�cations

Monica Brockmeyer

Computer Science Department

Wayne State University

Detroit, MI 48202

mab@cs.wayne.edu

Abstract

This paper introduces the use of abstraction

relationships for timed automata. Abstrac-

tion relations make it possible to determine

when one speci�cation implements another,

i.e. when they have the same set of com-

putations. The approach taken here permits

the hiding of internal events and takes into

account the timed behavior of the speci�ca-

tion. A new representation of the semantics

of a speci�cation is introduced. This repre-

sentation, min-max automata is more com-

pact than other types of �nite state automata

typically used to represent real-time systems,

and can be used to de�ne a variety of abstrac-

tion relationships.

1 Introduction

This paper describes the use of min-max au-

tomata to specify the behavior of real-time

systems compactly. Originally developed [2]

as an alternative representation of timed be-

havior for the Modechart language[12], in

order to support the evaluation of abstrac-

tion relationships between Modechart spec-

i�cations, min-max automata are a general

construct for representing the behavior of

timed systems. Min-max automata are a

more general form of automata than the

computation graphs originally developed for

Modechart[27], but are more compact than

other types of automata which represent the

passage of each unit of time as a distinct edge.

Thus, min-max automata are more suitable

for model-checking and automated evalua-

tion of abstraction relationships between au-

tomata.

Abstraction and re�nement relationships

permit the evaluation of whether one speci-

�cation can replace another. When can one

speci�cation replace another? What does it

mean for two speci�cations to have the same

behavior or for one speci�cation to have more

general behavior? Abstraction permits the

substitution of module with a simpler im-

plementation for one that is more complex.

In abstraction, modules can be simpli�ed by

hiding internal details or by simplifying tim-

ing constraints.

There are several important uses for ab-

straction relations. This work was primar-

ily motivated by the desire to ameliorate the

state-space explosion problem which arises in

mechanical model-checking. If one speci�-

cation is an abstraction of another (i.e. it

has more general behavior), then all behav-

iors of original are behaviors of the abstrac-

tion. Therefore, it may be advantageous

to mechanically verify the abstraction rather

than the original speci�cation, should it have

a more compact representation. Frequently,

abstractions are created in an ad hoc man-

ner in order to perform model checking. This

research provides a formal basis for creating

and using abstractions for real-time speci�ca-

tions.

Two other scenarios for using abstraction

relations merit discussion. First, abstractions

may be applied as part of a \top-down" de-

velopment procedure. First, a very general

speci�cation of a real-time system may be

de�ned. Then, a series of re�nements may

add increasing detail, resulting in speci�ca-

tions which are more operational. If this se-

quence of re�nements is designed while main-

taining an abstraction relation at each step,

then properties which have been veri�ed at

In particular, for real-time systems, the

process of re�nement might include the spec-

i�cation of tighter and tighter timing bounds

as assumptions about the environment of a

system are re�ned. the previous step will hold

for each re�nement step.

The last scenario involves showing an ab-

straction relationship between two speci�ca-

tions where one represents an implementation

and the other represents the properties which

must hold. In this case, instead of performing

model-checking, one shows that a property,

described as a speci�cation, holds for the im-

plementation.

Because of the timed behavior of Mod-

echart speci�cation, it is not possible to use

the standard notion of program equivalence

used to relate untimed concurrent programs

[23]. The usual approach relies on the repre-

sentation of the system as a labeled transition

system. The original behavior representation

of a Modechart speci�cation [27], a compu-

tation graph, is a type of labeled transition

system which captures the untimed behavior

of a Modechart speci�cation. Timing infor-

mation is described in associated separation

graphs. As a consequence it is not possible

to de�ne abstraction relationships directly for

computation graphs.

The approach taken here is to represent all

timing constraints explicitly in the labeled

transition system. Then, the simulation re-

lationships described in the literature can be

directly applied. A new type of labeled tran-

sition system, min-max timed automata, are

introduced. Each edge in the automata rep-

resents either the passage of time or a dis-

crete system event which takes no time. Min-

max automata represent elapsed time with

time-passage edges which specify the mini-

mum and maximum amount of time which

can elapse between two discrete events.

The rest of this paper is organized as fol-

lows: Section 2 introduces both discrete-

timed automata and min-max automata.

Section 3 describes the extensions to the

usual de�nitions for a move in an automata

necessary to de�ne abstraction and simula-

tion relationships. Section 4 de�nes bisim-

ulation and trace inclusion relationships for

min-max automata. Conclusions and future

work are found in Section 5.

2 De�nition of Min-Max

Automata

This research is motivated by two goals.

First is the ability to mechanically evaluate

abstraction relationships between automata

representing timed systems. Second is achiev-

ing a compact representation of timed sys-

tems. These goals are achieved by the use of

min-max automata in which each time pas-

sage edge denotes a range of possible times

elapsed. This results in a more compact rep-

resentation than other approaches because

multiple paths can be collapsed into one.

However, because each path in the min-

max automata can potentially represent more

than one timed execution of a system, the

usual notions of bisimulation and abstraction

relations cannot be directly applied.

De�nition 2.1. A min-max automata, A is

de�ned as the tuple

< states(A); initial(A); actions(A); next(A)>

where

� The initial states, initial(A) �

states(A),

� The actions of A, actions(A), is the

union of the the sets external(A) and

f�g and times(A) = f(min;max) :

min;max 2 fZ+
[1g and min � maxg

where � is called the internal action and

times(A) are time-passage actions, and

� The next-state relation, next(A) is a

subset of states(A)�actions�states(A).

Min-max automata, like discrete timed au-

tomata, are examples of Lynch's [22] untimed

automata. And like discrete-timed automata,

the time-passage actions can be used to assign

occurrence times to external events in a trace

to form a computation.

� is distinguished as the internal action of

A. It is considered to be invisible outside of

A. If � is a sequence of actions in actions(A),

then �̂ is the same sequence with all � actions

removed, and �� is the sequence with the time

actions (elements of times(A)) removed.

If (s; a; s0) � next(A), then the notation

s
a

�! s0 may be used to indicate this. If there

is a sequence, � for which there are states

s0; s1; s2; : : : sn, such that for all i, si
�i
�! si+1,

� is called a �nite execution fragment of A,

and one can write s0
�

�! sn. For an in�-

nite sequence, the notation s0
�

�! is used. A

move of A, indicated by s

=) s0, occurs if

s
�

�! s0 and
 = �̂. Thus, a move ignores

internal actions.

If s0 is an initial state of A, then � is an

execution of A. The sets, execs�(A); execs!;

and execs(A) indicate the sets of �nite, in�-

nite, and executions of A. If the time pas-

sage actions are removed, (��), the result-

ing sets are the untimed �nite, untimed in-

�nite, and untimed executions of A, de-

noted execs�
U
(A); execs!

U
; and execsU(A). If

the internal action is removed from an ex-

ecution of A,
 = �̂, the resulting se-

quence is called a trace of A. The sets of

traces of A are traces�(A); traces!(A), and

traces(A) for the �nite, in�nite, and all traces

of A. The corresponding untimed traces,

traces�
U
(A); traces!

U
(A), and tracesU(A) are

also de�ned, for the corresponding �
.

The actions in the set external(A) repre-

sent the discrete, externally visible actions of

the system. In the context of Modechart,

these could represent mode entry, mode exit,

and mode transition events which are visi-

ble on the interface of a Modechart module.

The symbol � is used to represent internal

events which can not be observed externally.

Both external(A) and � events occur instan-

taneously. The set external(A)[f�g is called

discrete(A).

The time passage actions represent the

passage of an amount of time between the

values of min and max. When they oc-

cur in an execution, they represent time

elapsing between the instantaneous exter-

nal and � events. The values of a time-

passage edge, e, are indicated by min(e) and

max(e). A timed event sequence is a se-

quence � = d0; d1; d2; : : : with di = (ai; ti) 2

discrete(A) � Z+ and ti increasing. If the

timed event sequence corresponds to some ex-

ecution � of A such that for every di 2 �, if

ai = �k then ti �
P

0�j<k
�j2times(a)

min(�j) and

ti �
P

0�j<k
�j2times(a)

max(�j) if maxj 6= 1 for

all j. If maxj = 1 for any j, then only the

lower bound restriction holds. then � is called

a timed execution of A. It can be observed

that � assigns times to the discrete events in

� in a way that is consistent with the time

passage events in �. If the timed event se-

quence corresponds to a trace of A it is called

a timed computation. comps(A) indicates the

set of timed computations of A.

3 Issues in De�ning Ab-

straction Relations for

Min-Max Automata

Direct application of the de�nitions for ab-

straction relations described in the litera-

ture is problematic, since each path through

a min-max automata represents more than

one (timed) computation. As a consequence,

soundness and completeness results which

hold for the ordinary de�nitions of abstrac-

tion relationships (e.g. bisimulation) will

hold for traces of min-max automata, but not

necessarily for computations.

Moreover, time-passage edges have some

properties which cause unexpected results

when the ordinary abstraction relations are

applied directly using the usual de�nition of

a move. The de�nition of a move is relaxed,

leading to more powerful abstraction rela-

tions.

Example 3.1. Consider the min-max au-

tomata P and Q, depicted in Figure 1.

P Q

2

1

0
(3,5)

3

2

1

0

4

(1,2)

(2,3)

a

τa

Figure 1: Complications in matching time

passage edges in a min-max automata

The ordinary de�nition of a move will not

permit the sequence 0 �!P 1; 1 �!P 2, to

be matched to 0 =) 4 in Q, for any of the

abstraction relations described. Yet, the two

systems describe the same set of timed com-

putations and have very similar structure.

It should be possible to extend the def-

inition of a move to permit a single time-

passage edge to be matched with an appro-

priate sequence of time-passage edges in the

abstraction such that a time passage edge on

(m;n) could be matched by a sequence of

time passage edges whose minimums sum to

m and whose maximums sum to n. How-

ever, the de�nitions of abstraction relation-

ships described in the literature match a sin-

gle edge to a move. That is, if a min-max

automata has an edge with action (1; 2) fol-

lowed by (2; 3), while it can be said that the

automata moves on (3; 5), what move should

each of (1; 2) and (3; 5) be matched to in the

abstraction automata?

Other approaches (discrete-timed

automata[3] and [22] for example) ad-

dress this problem by �lling in all the

possible time passage edges. In this case,

if there were an edge (3; 5) in a min-max

automata between points s and s0, then there

would have to be every possible sequence of

edges between s and s0 such that the sum of

the minimum times was 3 and the sum of

the maximum times was 5. However, this

defeats the purpose of min-max automata

which is to provide a �nite and more compact

representation of a system, by using min-max

time passage edges.

Instead, the problem is addressed by de�n-

ing a canonical representation for a sys-

tem. The canonical representation combines

all sequences of time-passage edges and re-

places them with new edges corresponding

to a move. In the example, the sequence

(1; 2); (2; 3) would be replaced by a single

time-passage edge (3; 5). The abstraction re-

lations are then de�ned on the canonical rep-

resentation. A canonical representation of a

min-max automata, A, denoted can(A), is de-

�ned by computing the closure of a min-max

automata with regard to the time-passage

edges and deleting all but the maximal length

edges.

A consequence of computing the canoni-

cal representation of a min-max automata is

that some points are left unreachable. Since

the canonical representation represents the

same set of timed computations as the orig-

inal min-max automata, this is of no conse-

quence. However, the de�nitions of the simu-

lation relationships must be adjusted to take

this into account. The unreachable points are

not required to be included in the simulation

relations.

De�nition 3.1. A point s in a min-max au-

tomata is reachable if there is a sequence �

such that s0
�

�! s, where s0 is an initial point

of the automata. The set of reachable points

of an automata A is denoted reachable(A).

The abstraction relations will be de�ned al-

most identically as in the literature. However,

only reachable points will be included and the

canonical representation of the min-max au-

tomata will be used. This will address the

anomaly from Example 3.1.

A second issue is described in Example 3.2.

2

1

0
(3,5)

a

P Q

2

1

0
(1,10)

a

Figure 2: Rationale for a relaxed-time move

in a min-max automata

Example 3.2. Consider min-max automata

P and Q, depicted in Figure 2.

Then comps(P) � comps(Q), but there is

no abstraction relationship between P and

Q. If the individual computations were rep-

resented on separate paths as they are for

discrete-timed automata, then an abstraction

relation would exist.

This problem is avoided by extending the

de�nition of a move, to permit time-passage

edges to be matched to time-passage edges

which are inclusive of the times represented

by the original edge. That is, a time-passage

edge (m;n) will be matched to a time-passage

edge (m0; n0) if m0
� m and n � n0.

First, a time-relaxed step, relaxes the tim-

ing requirements of a time-passage edge.

De�nition 3.2. If s
(m;n)
�! s0, and m0

� m

and n � n0, then s
(m0

;n
0)

7! s0

Next, the de�nition of a move is expanded

to accommodate time-relaxed steps.

De�nition 3.3. A time-relaxed move of A,

indicated by s0

; sn, occurs if
 = �̂ where

� is a sequence of states, s0; s1; s2; : : : sn, such

that for all i, si
�i
�! si+1 or si

�i
7! si+1.

By substituting time-relaxed moves for or-

dinary moves in the de�nitions of the abstrac-

tion relations, the anomaly described in Ex-

ample 3.2 is avoided. It is now possible to

de�ne abstraction relations for min-max au-

tomata.

4 Abstraction Relations

for Min-Max Automata

This paper now considers the issues of when

one speci�cation is an abstraction (or imple-

ments) another speci�cation. Trace inclusion

or trace equivalence has been widely used

to describe when one system implements an-

other [21, 22]. The terms simulation [21],

homomorphism [18], and re�nement mapping

[1] have all been used to reduce the problem

of showing trace inclusion to proving some-

thing about transitions in some kind of au-

tomata. Thus, only a local property needs to

be demonstrated. All of these techniques re-

late systems in terms of the timed behavior

of visible events. In each case, the behavior

of internal events is hidden. This section de-

scribes several such relationships in the con-

text of discrete-timed automata.

4.1 Bisimulation and Forward

Simulation

One common technique for showing that

two systems are observationally equivalent

is called bisimulation [25]. Bisimulation in-

volves �nding a relation on the states of two

systems such that two states being bisimi-

lar means that each state has an edge to a

state so that the resulting states are bisim-

ilar. This approach can be relaxed (called

weak bisimulation) so that an edge in each

system is matched by a move (including in-

ternal events) so that the resulting states are

bisimilar. Bisimulation is a rather conser-

vative notion of system equivalence, as it is

sound but not complete, but it is widely used

especially in process algebras [24].

In order to hide internal events, a sequence

of steps, or a move is more relevant to the

question of whether two automata similarly.

A move, as de�ned above, is a subpath be-

tween two points where no intervening events

are externally visible. A weak bisimulation

[25] relaxes the requirement that the two sys-

tems proceed in lockstep. Rather, it is only

necessary that an edge between two points

correspond to a move between two points.

De�nition 4.1. For min-max automata,

P and Q, r � reachable(can(P))�

reachable(can(Q)), is a weak bisimula-

tion, if

� for all p 2 initial(P), there is some q,

such that (p; q) 2 r and q 2 initial(Q),

� for all q 2 initial(Q), there is some p,

such that (p; q) 2 r and p 2 initial(P),

� if 8(p; q) 2 r :

{ if p
e

�! p0 then 9q0 : q
e

; q0 and

(p0; q0) 2 r, and

{ if q
e

�! q0 then 9p0 : p
e

; p0 and

(p0; q0) 2 r.

Informally, this states that two points are

bisimilar if any edge from one of the points

can be matched by the other point making a

move on the same event and reaching a point

that is weakly bisimilar to the point reached

from the �rst point. Since weak bisimulations

are closed under union, it can be shown that

there is a largest weak bisimulation, denoted

�, for any pair of computation graphs for a

given set of observable events.

The following theorem establishes the

soundness of bisimulation.

De�nition 4.2. The notation comps(P) �

comps(Q) indicates comps(P) � comps(Q)

and comps(Q) � comps(P).

Theorem 4.1. P � Q =) comps(P) �

comps(Q):

Proof. Similar to the proof for ordinary timed

automata found in the literature [22]. The

proof is in [2], which shows that the exten-

sions to the de�nition of a move do not violate

the conditions of the usual proof.

Bisimulation is not complete. That is,

there are systems which have the same set

of timed traces, but which are not bisimilar.

This is because bisimulation captures some

aspects of system structure. Each point must

be bisimilar to a point in the other system

which permits actions which move to points

which are bisimilar to those which can oc-

cur in the original speci�cation. As a con-

sequence, bisimulation distinguishes with re-

gard to the state of the system as well as the

sequence of actions or events.

4.2 Forward Simulations

If the de�nition of bisimulation is modi�ed to

apply in only one direction, the result is called

a forward simulation [21]. Forward simula-

tions are also related to simulations [28, 13],

history measures [17], downward simulations

[9, 11, 15], and possibilities mappings [20].

Because the restriction is in one direction,

a forward simulation shows trace inclusion

rather than trace equivalence.

In practice, this approach is desirable. Of-

ten a general purpose speci�cation will be de-

signed as well as an implementation or oper-

ational speci�cation which has a narrower set

of behaviors. It is not necessary for the im-

plementation to have the full set of behaviors

as the speci�cations. Alternatively, perhaps a

simpli�cation can be made to a speci�cation

which reduces the size of the computation

graph, but which admits a larger set of be-

haviors. If the a trace inclusion relationship

holds between the two systems, then it may

be possible to model-check the simpler system

and apply the results to the more complicated

system.

De�nition 4.3. For min-max automata,

forward simulation from P to Q is a

relation f over reachable(can(P)) and

reachable(can(Q)) a forward simulation if:

� for all p 2 initial(P), there is some q,

such that (p; q) 2 f and q 2 initial(Q),

� if 8(p; q) 2 f and all e 2 actions(P),

p
e

�! p0 then 9q0 : q
e

; q0 and (p0; q0) 2

f .

Lynch [21] shows that forward simula-

tions are a pre-order (i.e. they are re
exive

and transitive). Soundness follows from the

soundness of bisimulations.

4.3 Forward-Backward Simula-

tions

Forward-Backward simulations were also de-

scribed by Lynch and are similar to the in-

variants and ND-measures of [16, 17] as well

as subset simulations [14], and simple failure

simulations [7]. They are less restrictive than

forward simulations. Perhaps, most notewor-

thy is that they are complete for trace inclu-

sion. However, since a single trace of a min-

max automata can represent more than one

timed computation, forward-backward simu-

lations are not complete for timed computa-

tions.

De�nition 4.4. For min-max automata,

forward-backward simulation from P to Q

is a relation fb over reachable(can(A)) and

N(reachable(can(B))) 1 such that:

� for all p 2 initial(P), there is some

set A, such that (p;A) 2 fb and A �

initial(Q),

� if p
e

�! p0 and (p;A) 2 fb, then there

exists a set A0 such that (p0; A0) 2 fb

such that for every q0 2 A0 there is some

q 2 A such that q
e

; q0.

P Q

a

(3,3)

a

(3,5)

a

(4,5)

Figure 3: Completeness Problem for Min-

Max Automata

Example 4.1. To understand why forward-

backward simulations are not complete for

min-max automata, consider min-max au-

tomata, P and Q, depicted in Figure 3.

1For a set X,N(X) indicates the set of non-empty

subsets of X.

Then, comps(P) � comps(Q) but it is not

the case that P �FB Q, because there is no

match for the time-passage edge, (3; 5).

Therefore, further research is required to

�nd an abstraction relation which is complete

for computations of min-max automata.

4.4 Homomorphisms and Re-

�nements

Homomorphisms [8, 18] and re�nement map-

pings [1, 19, 21], are more restrictive than

forward simulations, because they require a

function from states(P) to states(Q) rather

than a relation.

De�nition 4.5. For min-max au-

tomata, P and Q, a function f between

reachable(can(P)) and reachable(can(Q)),

is a re�nement if:

� for all p 2 initial(P), f(p) 2 initial(Q),

� if for all e 2 actions(P) p
e

�! p0 then

f(p)
e

; f(p0)

The proof of soundness for forward simula-

tions, forward-backward simulations, and re-

�nements is similar to that for bisimulations.

Another interesting type of relationship be-

tween two automata is failures inclusion or

equivalence, developed by Hoare [4, 10]. An

alternative characterization, given by Hen-

nessy and de Nicola [6], is called testing

equivalence in which equivalent automata

pass or fail the same set of tests. Testing and

failures relationships cannot be characterized

by matching an edge in one automata with

some kind of move in another automata and

so are not discussed in this paper.

5 Conclusions and Future

Work

This paper has introduced min-max au-

tomata which are a compact form of timed

automata suitable for mechanical evaluation

of simulation and abstraction relationships.

Extensions to the de�nition of a move nec-

essary to support simulation and abstraction

relationships were de�ned and several types

of equivalence and abstraction/simulation re-

lationships were described in the context of

min-max automata. Related research e�orts

extend these ideas by describing automatic

generation of abstractions [2].

Future work involves integration of min-

max automata into existing software tools

to automatically generate min-max automata

for Modechart speci�cations and to automat-

ically check for the simulation and abstrac-

tion relationships de�ned in this paper. The

Modechart Toolset [5, 26] provides a graphi-

cal interface for editing, consistency-checking,

simulation, and veri�cation of real-time spec-

i�cations in the Modechart Language. This

will permit evaluation of the techniques on

real-world examples. Future work is also re-

quired to de�ne an abstraction relationship

which is complete for trace inclusion of min-

max automata.

References

[1] M. Abadi and L. Lamport. The exis-

tence of re�nement mappings. Theoret-

ical Computer Science, 82(2):253{281,

1991.

[2] M. Brockmeyer. Monitoring, Testing,

and Abstractions of Real-Time Speci�-

cations. PhD thesis, The Department

of Electrical Engineering and Computer

Science, The University of Michigan,

1999.

[3] M. Brockmeyer. Using modechart mod-

ules for testing formal speci�cations.

In Proceedings of the High Assurance

Systems Engineering Workshop. IEEE,

1999.

[4] S. D. Brookes, C. A. R. Hoare, and A.W.

Roscoe. A theory of communicating se-

quential processes. Journal of ACM,

pages 560{599, 1984.

[5] P. C. Clements, C. L. Heitmeyer, B. G.

Labaw, and A. T. Rose. MT: A toolset

for specifying and analyzing real-time

systems. In Proc. IEEE Real-Time Sys-

tems Symposium, December 1993.

[6] R. de Nicola and M. C. Hennessy. Test-

ing equivalences for processes. Journal

of Theoretical Computer Science, pages

83{133, 1983.

[7] R. Gerth. Foundations of composi-

tional program re�nement. In Proceed-

ings REX Workshop on stepwise re�ne-

ment in distributed systems: Models,

Formalism, Correctness, Lecture Notes

in Computer Science, volume 430, pages

777{808, 1987.

[8] A. Ginzburg. Algebraic Theory of Au-

tomata. Academic Press, 1968.

[9] J. He. Process simulation and re�nment.

Journal of Formal Aspects of Computing

Science, 1:229{241, 1989.

[10] C. A. R. Hoare. Communicating Sequen-

tial Processes. Prentice-Hall, Englewood

Cli�s, NJ, 1985.

[11] C. A. R. Hoare, J. He, and J. W.

Sanders. Prespeci�cation in data re�ne-

ment. Information Processing Letters,

25:71{76, 1987.

[12] F. Jahanian and A. K. Mok. Mod-

echart: A speci�cation language for real-

time systems. IEEE Trans. Software En-

gineering, 20(10), 1994.

[13] B. Jonsson. Compositional Veri�cation

of Distributed Systems. PhD thesis, Up-

saala University, 1987.

[14] B. Jonsson. Simulations between speci-

�cations of distributed systems. In Pro-

ceedings Concur '91, Lecture Notes in

Computer Science, volume 527, pages

347{360. Springer-Verlag, 1991.

[15] M. B. Josephs. A state-based approach

to distributed processing. Distributed

Computing, 3:9{18, 1988.

[16] N. Klarlund and F. Schneider. Verifying

safety properties using in�nite state au-

tomata. Technical Report 89-1039, De-

partment of Computer Science, Cornell

University, 1987.

[17] N. Klarlund and F. Schneider. Prov-

ing non-deterministically speci�ed

safety properties using progress mea-

sures. Information and Computation,

171(1):151{170, November 1993.

[18] R.P. Kurshan. Computer-Aided Veri�-

cation of Coordinating Processes: The

Automata-theoretic Approach. Princton

University Press, 1994.

[19] L. Lamport. Specifying concurrent

program modules. ACM Transactions

on Programming Languages, 5:190{222,

1983.

[20] N. Lynch. Multivalued possibilities map-

pings. In Proceedings REX Workshop on

stepwise re�nement in distributed sys-

tems: Models, Formalism, Correctness,

Lecture Notes in Computer Science, vol-

ume 430, pages 519{543, 1987.

[21] N. Lynch and F. Vaandrager. Forward

and backward simulations { part i: Un-

timed systems. Information and Compu-

tation, 121(2):214{233, September 1995.

[22] N. Lynch and F. Vaandrager. For-

ward and backward simulations { part

ii: Timing-based systems. Information

and Computation, 128(1):1{25, 1996.

[23] Z. Manna and A. Pnueli. The Temporal

Logic of Reactive and Concurrent Sys-

tems. Springer-Verlag, 1992.

[24] R. Milner. Communication and Concur-

rency. Prentice-Hall, 1989.

[25] D. Park. Concurrency and automata

on in�nite sequences. Lecture Notes in

Computer Science, 104, 1980.

[26] A. Rose, M. Perez, and P. Clements.

Modechart toolset user's guide. Tech-

nical Report NRL/MRL/5540-94-7427,

Center for Computer High Assurance

Systems, Naval Research Laboratory,

Washington, D.C., February 1994.

[27] D. Stuart. Implementing a veri�er for

real-time systems. In Real-Time Systems

Symposium, pages 62{71, Orlando, FL,

December 1990.

[28] R. J. van Glabbeek. Comparative Con-

currency Semantics and Re�nement of

Actions. PhD thesis, Free University,

The Netherlands, 1990.

Algebra of Behavior Tables∗

Steven D. Johnson and Alex Tsow

Indiana University Computer Science Department
sjohnson@cs.indiana.edu

Abstract

A design formalization based on behavior tables was
presented at Lfm97. This paper describes ongoing
work on a supporting tool, now in development. The
goal is to make design derivation, the interactive con-
struction of correct implementations, more natural
and visually palatable while preserving the benefits
of formal manipulation. We review the syntax and
semantics of behavior tables, introducing some new
syntactic elements. We present a core algebra for ar-
chitectural refinement, including new notational con-
ventions for expressing such rules.
Keywords: behavior table, design derivation, for-
mal synthesis.

1. Introduction

Behavior table notation emerged out of case studies
in formal design derivation between 1985 and 1995.
The DDD transformation system [7] is based on func-
tional algebra. Behavioral expressions at the level
of algorithmic state machines [1] are represented by
recursive systems of function definitions, and archi-
tecture oriented implementations are represented by
recursive systems of stream expressions. In DDD,
these representations are manipulated as transforma-
tions on Scheme programs, so the expressions are also
executable.

The primary goal in our early case studies was to
interactively impose hardware architectures on algo-
rithmic specifications. As these studies became larg-

∗This research is supported, in part, by the National Science
Foundation under Grant MIP9610358.

er, a practice emerged of printing DDD expressions
in a tabular form, reminiscent of register transfer ta-
bles. The tables helped design teams visualize their
architectural goals so they could strategize about how
to accomplish them in the DDD algebra.

We began to contemplate using the tables more di-
rectly as formal objects, retargetting the DDD alge-
bra to operate on tabular representations. We believe
the tables are more perspicuous to practicing profes-
sionals who, it has been claimed, are put off by the
notation used in formal reasoning systems.

The rising visibility of tabular specification lan-
guages such as Tablewise [3], SCR* [2], and and-or
transitions in RSML [8], helped convince us to look at
behavior tables more seriously as a formalism rather
than merely as a visual aid. Subsequently, we have
undertaken to develop a tool for interactive design
derivation using them.

In this paper, we develop a core algebra for archi-
tectural manipulation. In the main, this algebra cor-
relates to the “structural” algebra of sequential sys-
tems, presented in [5]. Although the main purpose is
to lay the groundwork for tool implementation, one
ancillary contribution of this paper is its notational
conventions for stating the rules of the algebra, which
use table schemes to simplify quantification.

The conclusion lists additional topics and issues
entailed in the implementation effort. We extend the
term-level syntax presented at Lfm97 [6] to include
provisions for bounded indirection, additional algebra
for a simple kind of data refinement, and possible
extensions for verification.

2. Terms

Behavior tables are arrays of terms in a ground vo-
cabulary of constants and operations. We very briefly
review the terminology of first order structures then
introduce the extensions that are assumed in behav-
ior tables.

A first order structure describes a family of value
sets, A1, . . . , An, together with a collection of to-
tal functions, f1, . . . , fm, on these sets. With each
set Ai is associated a type symbol, τi,. There are
constant and operator symbols representing the func-
tions fi, and a distinct set of variable symbols. The
notation v: τi asserts that the variable v ranges over
values in Ai. The signature of an operator specifies
its domain and range, which in general are nested
products. The formula f : (τ1, (τ2, τ3)) → (τ4, τ5, τ6)
asserts that the operation f maps the product A1 ×
(A2 × A3) to the product A4 × A5 × A6. We shall
allow for multioutput operations, as suggested here,
whose output signatures are n-tuples.

A term is a variable, constant, or application,
f(T1, . . . , Tn), of an operation f to the terms Ti ac-
cording to the f ’s signature.

A structure becomes an equational algebra when
it is provided with a set E of equational identities
among terms (over a distinguished set of logical vari-
ables). E induces an equivalence relation; and we
write |=E s ≡ t to express the fact that s and t are
provably equivalent under E.

Certain additional features are assumed of al-
l structures used in behavior tables and are thus ab-
sorbed at the metalinguistic level.

• A sort Bool is assumed with constants true and
false and the identities of boolean algebra. Oper-
ations with range Bool are called tests.

• A don’t care constant is designated by ‘\’.

• Finite product (tupling) and projection opera-
tions of each type are assumed Projections are
denoted by sans-serif adjectives, 1st, 2nd, 3rd,
4th, 5th . . ., ith, An n-tuple is expressed as
a parenthesized series of n terms, (T1, . . . , Tn).
Projections applied to n-tuples can be simplified

at the syntactic level; for instance,

|= 2nd(T1, T2, T2) ≡ T2

• It is assumed that arbitrary finite sets of tokens
can be represented (e.g. by n-tuples over Bool).
We shall extend this idea to what Hoover calls a
finite logic [3], with which we associate a specific
selection operation, written

case s of
a1 : t1

...
ak : t1

The usual treatment of terms is extended for ex-
plicit multioutput operations. The definition of sub-
stitution on terms is adapted for multioutput opera-
tions by allowing nested lists of variables to serve as
substitution patterns. Such a list is called an identi-
fier.

Definition 1 An identifier is either a variable or
a nested list, (X1, . . . , Xn), of distinct identifiers,
meaning that they share no common variables.

Definition 2 The formula T [R/X] denotes a sub-
stitution of the term R for the identifier X in the
term T . The formula T [R1/X1, . . . , Rn/Xn] denotes
the simultaneous and respective substitutions of terms
Ri for identifiers Xi, i ∈ {1 . . n}. Substitution is de-
fined by induction on the language of terms. In the
base cases, constants are unchanged and for a vari-
able symbol u,

u[R/X] =

{
R if X = u
u if X 6= u

For applications and n-tuples,

f(T1, . . . , Tn)[R/X] = f(T1[R/X], . . . , Tn[R/X])

For nested identifiers, a simultaneous substitution
is done on the constituents:

T [R/(X1, . . . , Xn)] = T [1st(R)/X1, . . . , nth(R)/Xn]

In the last case, substitution of an n-tuple for an n-
element identifier simplifies to

T [(R1, . . . , Rn)/(X1, . . . , Xn)]
= T [R1/X1, . . . , Rn/Xn]

3. Syntax of behavior tables

Behavior tables are closed expressions whose terms
contain variables from three disjoint sets: I (inputs),
S (sequential signals, or data state), and C (combi-
national signals). Fix these sets for the remainder of
this section. We will write ISC for I ∪ S ∪ C and
SC for S ∪ C. We use the term “register” for an el-
ement of S, but this is a euphemism that should be
interpreted very abstractly. There is no assumption
that these variables denote finite values, nor are ta-
bles intended only for register-transfer specification.
The form of a behavior table is:

Name: Inputs → Outputs

Conditions Registers and Signals

...
...

Guard Computation Step
...

...

Inputs is a list of input variables and Outputs is a
set of terms over ISC, but without loss of generality,
assume O ⊆ SC. Conditions is a set P of predicates
over ISC, that is, finitely typed terms ranging over
finite types, such as truth values, token sets, etc.

The notion of term evaluation used here is stan-
dard. The value of a term, t, is written σ[[t]], where σ
is an assignment or association of values to variables.

Definition 3 A guard is a set of constants indexed
by a condition set P : g = {cp}p∈P . A decision table
D = [P,G], consists of a condition set and a an as-
sociated list of guards. We say g holds for an assign-
ment σ to ISC when, for each p ∈ P , either cp = \
or σ[[p]] = cp.

Following [3], we say a decision table is functional
when G describes a proper partitioning of the possible
assignments to ISC. In other words, the guards are
“consistent” and “complete”.

Definition 4 A computation step or action is a
set of terms, one for each register and signal: a =
{tv}v∈SC. An action table is a set of actions typical-
ly indexed by the guards of a corresponding decision
table.

i2

i1

i1x i2

go

a

b

done*

w

MULT:(go, a, b) → (done*, w)

go P (even? u) u v w done*

1 \ \ a b 0 P ∧ ¬go
0 1 \ \ \ w P ∧ ¬go
0 0 1 u÷2 v×2 w P ∧ ¬go
0 0 0 u÷2 v×2 w+v P ∧ ¬go
where P ≡ (zero? u) ∨ (zero? v)

Figure 1: Example of a behavior table

Definition 5 A behavior table for I → O consists
of a decision table, D, with guards G = {g1, . . . gn},
and an action table indexed by G, A = {tv,k | v ∈
SC and gk ∈ G}.

Figure 1 shows a shift-and-add multiplier, ex-
pressed as a behavior table. The timing diagram is
provided to explain the interface, with multiplication
performed within a full handshake.

4. Synchronous semantics

A behavior table [D,A] for O ⊆ SC denotes a rela-
tion between infinite input and output sequences. We
call these sequences streams because in prior work
we obtain a semantics by interpreting a table as a
(co)recursive system of stream-defining equations [7].
More directly, suppose we are given a set of initial val-
ues for the registers, {xs}s∈S and a stream for each
input variable in I. Construct a sequence of assign-
ments, 〈σ0, σ1 . . .〉 for ISC as follows:

(a) σn(i) is given for all i ∈ I and all n.

(b) For each s ∈ S, σ0(s) = xs.

(c) σn+1(s) = σn[[ts,k]] if guard gk holds for σn.

(d) For each c ∈ C, σn(c) = σn[[tc,k]] if guard gk
holds for σn.

The stream associated with each o ∈ O is
〈σ0(o), σ1(o), . . .〉. This semantic relation is well de-
fined if there are no circular dependencies among the
combinational actions {tc,k | c ∈ C, gk ∈ G}. The
relation is a function (i.e. deterministic) if decision
table D is functional. We shall restrict our attention
to behavior tables that are well formed in these re-
spects. In essence, well formedness reflects the usual
properties required of synchronous finite state ma-
chines.

To achieve well formedness, we constrain behavior
tables in two ways. First, we prohibit “combinational
feedback” in the actions. Given row k in the action
table {tv,k | v ∈ SC}, there is a natural dependence
graph with vertices corresponding to the signal names
and edges given by the relation: a → b iff a is a
subterm of tb,k. Checking for combinational cycles is
a straightforward depth-first search.

Even if the actions themselves do not contain com-
binational loops, the decision table can still induce
race conditions or metastable behavior. Consider the
following table fragment where r and c are registered
and combinational boolean signals:

B : I → O

r c* · · · r c* · · ·

0 0 0 1

0 1 0 0

1 0 1 1

1 1 1 1

Intuitively, if the system makes a transition into a
state where σn(r) = 0, then combinational signal a
will oscillate. Our semantics is not well defined in this
case: if cr = 0 and cc = 0 in some guard gk = {cp}p∈P
at timeslice n, then σn(c) = 1 by (d). Since gk no
longer holds at σn, some other guard gj = {dp}p∈P
in which dr = 0 and dc = 1 hold changes σn(c) back
to 0.

The race condition occurs in our example when
σn(r) = 1 and σn(c) = 0. Although one could argue
that σn is well defined, we shall prohibit this mode of
expression anyway, as it reflects a kind of transition
race.

To eliminate these scenarios, we constrain the pred-
icates of the decision table to use only registered vari-
ables and input signals. This way, no action can di-
rectly change the guard gk since the values of regis-
tered signals persist for the duration of the present
action (c).

In addition, we shall require a functional set of
guards, as noted earlier. This results in deterministic
and total behavior, for which the algebra presented
here is intended.

We think of behavior tables as denoting persisten-
t, communicating processes, rather than subproce-
dures. In other words, behavior tables cannot them-
selves be entries in other behavior tables, but instead
are composed by interconnecting their I/O ports.
Composition is specified by giving a connection map
that is faithful to each component’s arity. In our
function-oriented modeling methodology, such com-
positions are expressed as recursive systems of equa-
tions,

λ(U1, . . . , Un).(V1, . . . , Vm) where

(X11, . . . , X1q1) = T1(W11, . . . ,W1`1)
...

(Xp1, . . . , Xpqp) = Tp(Wp1, . . . ,Wp`p)

in which the defined variables Xij are all distinct,
each Tk is the name of a behavior table or other com-
position, and the outputs Vk and internal connec-
tions Wij are all simple variables coming from the
set {Ui} ∪ {Xjk}.

Valid systems must preserve I/O directionality, ex-
cluding both combinational cycles and output con-
flicts. Checking validity has two stages and is again
a graph problem:

1. For each behavior table let its inputs and outputs
be vertices, and let i → o when output signal o
combinationally depends on input signal i.

2. Add the following edges to the disjoint union
of the behavior table I/O graphs: o → i
when Tj(. . . , o, . . .) is the right hand side of
an equation where Tj ’s I/O signature is Tj :
(. . . , i, . . .)→ O.

A legitimate connection network exists when this
graph has no cycles.

Provided they are well formed, deterministic sys-
tems are readily animated in modeling languages that
allow recursive stream networks to be expressed [4].
As long as each register has an initial value, the
streams are constructed head-first as a fixed-point
computation. Translation to both cycle-based and
event-based simulation languages is also relatively s-
traightforward, as long as the systems are expressed
over the concrete data types these tools recognize.

A synchronous semantics is simple and suited to
the clocked implementation models most high-level
synthesizers use. In fact, behavior tables will acquire
a range of semantics, depending on their applications,
just as HDLs and programming languages do. Even
with a variety of interpretations, their inherent struc-
ture helps reduce the mathematical bookkeeping that
often obscures semantic definitions.

5. Behavior Table Algebra

The collection of transformation rules presented in
this section applies to architectural refinement. This
set is not claimed to be complete nor is minimal in
any mathematical sense. At this stage, our principal
object is to build a set of rules that is robust enough
to serve as a core rule set for tool implementation.
mathematical efficiency is a secondary concern, for
the moment.

5.1. Notational conventions

Defining these rules has led to some stimulating no-
tational issues. In attempting to present the rules in
a clear way, we have been led to consider some novel
conventions for expressing features, particularly for
quantification. For reasons of both typography and
clarity, we want to reduce use of ellipses, columns,

and subscripts to describe a table as, for example,

b: (I1, . . . , Ik)→ (O1, . . . , O`)

P1 · · · Pm S1 · · · Sp

1 g11 · · · g1m t11 · · · t1p
...

. . .
...

. . .

n gn1 gnm tn1 tnp

Our table scheme notation uses the table itself as a
quantifier, and uses set elements as indexes rather
than number ranges. Uppercase italic variables de-
note sets; and differently named sets are always as-
sumed to be finite and disjoint. Lowercase italic vari-
ables denote indices ranging over sets of the same
name. The form

S

R xrs

represents a two-dimensional array (table) of items,
{xrs | r ∈ R and s ∈ S}. A san seriff1 identifier
denotes a fixed (throughout the scope of the rule)
element from the set of the same name. Thus, the
form

s

R xrs

represents a column, {xrs | r ∈ R}, and similarly for
rows.

Under these conventions, the table scheme from
Section 3 looks like

g
n,p

t
n,s.

.

.

N

1

I O
P S

b:

The use of ellipses 1 · · ·N on the left is not necessary,
but serves as an reminder that the rows are typically
numbered. That is, we usually take the set N to be
the first “N” numbers.

5.2. The rules

Some structural rules subsumed by the semantics,
must be implemented in the tool. For example, inter-
changing rows and columns is allowed since indices

1Where possible, we display these identifiers in red.

range over sets, not sequences. The underlying se-
mantics remain well defined because the order of e-
quations in a system is irrelevant. Similarly, renam-
ing variables is allowed under the usual rules of α
substitution2.

The rules fall into three groups, the first involving
both the decision and action table parts, the second
being operations on the action table part, and the
third being operations that affect the decision table
part.

Replacement

I O

pn
g

st

s

n

P
b:

n

|= tns ≡ uns ⇓

I O

pn
g

sn

P
b:

n

s

u

One term can be replaced by another term that is
(proven to be) equivalent in the underlying structure
(or theory). Recall that |= t ≡ u is a provable e-
quivalence in the underlying structure. In practice,
establishing equivalence would be done with a rewrit-
ing tool or proof assistant.

2Actually, behavior tables do not have free variables, so α
conversion is even simpler.

Decomposition

.

.

N

1

np
g. t tnt

I Ob:

ns

P S T

⇓

N

1

.

.
g

np
.

.

.
g

np
.

N

1

b : SO U

ns

1

t

T
I U

P
S

tnt

U TI
S P

b :2 T OU

Decomposition splits one table into two, both in-
heriting the same decision table. The compose oper-
ator connects the two tables to maintain the original
dependence among the signals. Interpreting the ta-
bles as functions on streams—and reading ‘∪ and ‘∩
as list operations—B1 ◦ B2 yields the system

B(I)
def
=O where
(O ∩ S) = B1(I ∪ T)
(O ∩ T) = B2(I ∪ S)

It is a background job of the table editor to maintain
the connection hierarchy as a byproduct of decompo-
sition. An upward composition transformation (⇑), if
formulated, would require conditions to exclude name
clashes and preserve well formedness. In using tables
for design derivation, one would typically decompose
tables rather than compose them.

This is by no means all there is to say about com-
position. This strong (in the sense of not being very
general) form of the Decomposition rule is essentially
a partitioning rule, allowing one to to impose hierar-
chy on designs.

Conversion

q

vjqj jg

b:

J t sp

I
p s

O

m
∀j, j′ ∈ J : gjp ≡ gj′p⋃
j∈J vjq = dom(q)

p q }vj :{ jg

q

case q

I
p s

O

t

b:

s J

This rule, allowing function to be moved between
the decision and action parts of a table, provides the
means to change the boundary between control and
architecture. The side conditions say that, within the
range indicated by J , the guards outside column q a-
gree, and the guards within column q are exhaustive.

Action collation

.

.

N

1

. g
np ns nr

I Ob:

tt

P rs

⇓
(defined)
(compatible)
(well formed)

.

.

N

1

. np
g

sn n

I Ob:

t r

P s

t s

r

The idea behind collation is that two, or several, com-
patible signals can be merged into one by instantiat-
ing don’t-cares. The ‘�’ operator denotes term-level

instantiation,

t � t′ =

 t if t′ = \
t′ if t = \
undefined otherwise

Compatible means that both variables must be com-
binational or both must be sequential. If both sig-
nals are combinational, an audit is required to assure
that the resulting system remains well formed, that
is, that instantiation does not introduce feedback.

Action identification

.

.

N

1

I O

.

P S
b:

g
np

t
ns

combinational m

.

.

N

1

. g
np

Ob: I
P S

t
ns

y nr

y

nr[/]y y

In terms of systems, this is the recursion rule, stat-
ing that y is equal, in a logical sense, to its defining
equation, and hence that one can be replaced for the
other. In fact, this rule can be applied on a row-
by-row basis, but we give the full-column version to
reflect the more typical case when a common subter-
m is being identified. If y were a sequential variable,
it would acquire the value rny in the next step and
so the replacement is invalid.

Action introduction

.

.

N

1

I O

.

P S
b:

g
np

t
ns

y fresh
well formed

m y unused

.

N

1

I

. rn y

O

.

P S
b:

y

g
np

t
ns

A new action column can be added (⇓) as long as
the signal name is not redundant and, in the case of
combinational signals, the action terms do not refer
to the signal being introduced.

Action grouping

.

.

N

1

np
g.

st

s
I Ob:

n

P

(both comb. or both seq.) m

.

.

N

1

. g
np

" "

1()

" "

2()t

1(s)

s

2(s)

n stn

I Ob:
P

Columns can be grouped and ungrouped as long as
the resulting columns are purely sequential or pure-
ly combinational. Thus, one canonical form for ac-
tion tables has just two columns. Recall that signal-
s names are nested identifiers; the notation ‘”1(s)”’
means that ungrouping transformations require ex-
plicit tuples in the header fields, and destructure
them in the obvious way. For instance, if s ≡ (a, b)
the ungrouped columns will be headed with a and b.

Action table entries need not be explicit tuples, al-
though they can be, because 1, 2, etc. are legitimate
operators.

Decision grouping

.

.

N

1
t ns

S

. n

I Ob:
p

,)(d epn p

compatible m

.

.

N

1
t ns

S

. dn

I
1()p 2()p

Ob:

p ne p

As with action tables, decision table columns can be
grouped into tuples. In contrast, the entries are val-
ues and the headers are terms, so explicit use of de-
tupling projectors is allowed in both.

Decision introduction

.

.

N

1

I O

.

P S
b:

g
np

t
ns

Q finite m

Q

nq

I O

t
ns

1
.
.

P
b:

g
np

N

.

S

One can introduce a new test with don’t-care criteria.
The underlying intent of this rule is its use in ad
hoc table constructions. A possible well formedness
restriction on this rule is that the resulting table be
safe from race conditions. Such a restriction can, in
principle, be applied when decisions are instantiated
(see just below), yielding a more general algebra.

Decision instantiation

q
I Ob:

s

P

hp t

S

m

q

f q

g

q

s

t s

t

I O
P

b:
S

.

.

.

N+1

1

hp

hp

Having introduced a new test to a behavior table,
instantiation is used to do case splitting. In the sim-
plest case, suppose that a \ appears in a decision table
entry. Then this rule provides for expanding that row
into enough duplicates to account for all the possible
values of the test. In the upward direction, the rule
gives us a way to combine rows whose actions are i-
dentitical. The notation fq ∪ gq anticipates allowing
for decision table entries to be sets of values, as is
seen in requirements specification languages.

I/O restriction

Input and output signals may be added to behavior
tables without concern so long as the inputs and out-
puts of the encapsulating system remain the same.
Such additions cannot introduce combinational feed-
back until they are used, and the decision/action in-
troduction rules check for well formedness.

Conversely, an unused I/O signal qualifies for re-
moval. We can remove input i to a behavior table if
no action or predicate contains i as a subterm. A be-
havior table output may be removed when is unused
in the surrounding interconnect expression.

6. Other aspects

This paper has developed a core algebra of behavior
table manipulation for architectural refinement. In

practice, the product of such manipulation is a de-
composition of the specification into subsystems for
synthesis into hardware or compilation into embed-
ded software components. This section briefly de-
scribes a number of other immediate issues and as-
pects entailed in the development of a design tool.

Figure 2 shows a derivation decomposing a be-
havior table into two components, one allocating t-
wo arithmetic operations to a single device. This
is an example of a system factorization, a funda-
mental transformation in the DDD algebra [5], and
the instance in the figure comes from an illustration
in Johnson’s Lfm97 presentation of behavior tables.
The example shows that the algebraic rules present-
ed in this paper are much more finely grained than
the transformations that typically would be used in
an interactive setting, but would instead serve as a
core set of rules from which larger-scale ones are com-
posed.

6.1. Stream semantics

Given a behavior table, one can construct an equiva-
lent sequential system by repeated applications of the
Decomposition and Conversion rules. Use Decompo-
sition to separate every column of the action table,
then Conversion to reduce each of the resulting tables
to a single row. The resulting nested system descrip-
tion can be flattened and simplified. Alternatively,
Decomposition can be generalized to simultaneous-
ly split tables into several components. To complete
the transformation, we must make initialization of
the sequential signals explicit. The resulting system
is

B(I)
def
=O where{
Xs = xs ! select(tests, alternatives)
Yc = select(tests, alternatives)

}
s∈S, c∈C

where the expression v ! S denotes an initialized
stream [5]. In DDD, this construction is reversed. An
initial behavior table is built from a system of stream
equations, each with a common selection combination
[7].

6.2. Bounded indirection

We have found an extension to the term-level syn-
tax called indirection [11] which is highly useful for
hardware applications and appears to be equally use-
ful in incremental specification development. If v is a
signal name, the term ∨v stands for a “reference” to
signal v; concretely, it is actually a token which can
later be used to select v. The term ∧w denotes that
selection. As an illustration, consider the table:

I → O

P s t u v S

1 ∨t f1 h1 \

2 ∨u f2 h2 \

3 \ f3 h3 ∧s

In essence, the term ∧s in the third row stands for
the term:

case s
∨t: : t
∨u: : u

Uses of indirection include the description of bidi-
rectional buses, other forms of implied selection, and
control branching. Of course, such use also neces-
sitates consistency audits over the whole table; for
instance, to verify that selected signals are compati-
ble and uniformly typed.

6.3. Data refinement

Another important set of rules for data refinemen-
t, will be presented in a future paper. Data refine-
ment involves the translation between levels of da-
ta abstraction. In our approach, the foundation for
data refinement lies in algebraic specification and e-
quational logic. Consequently, the initial connection
to the architectural rules presented here will lie in a
more general version of the Replacement rule.

However, replacement is only adequate for the s-
traightforward, combinational expansion of simple
representations; it does not address implementations
that involve sequential behavior. Our research on se-
quential decomposition [10] has not yet been reflected
in behavior tables.

6.4. Verification

We are also interested in integrating the derivation-
al formalism with property verification. One way to
approach this is to augment behavior tables with as-
sertions in a suitable temporal logic. Since we are
primarily interested in higher levels of specification,
“model checking” [12] these assertions would likely
require interaction. Considered as an algorithmic s-
tate machine, the table would provide contextual in-
formation making the proof process more agreeable.

6.5. Animation

Finally, animation, particularly symbolic execution,
would be an important feature of any practical be-
havior table tool. Consequently, we want to inte-
grate our tool with proof assistants—particularly ter-
m rewriters—not only to support replacement rules,
verification and type inference, but to provide in-
teractive simplification of terms in the fashion of
Moore’s symbolic spread sheets [9].

References

[1] Christopher R. Clare. Designing Logic Systems
Using State Machines. McGraw-Hill, 1973.

[2] Constance Heitmeyer, Alan Bull, Carolyn
Gasarch, and Bruce Labaw. SCR*: a toolset
for specifying and analyzing requirements. In
Proceedings of the Tenth Annual Conference on
Computer Assurance (COMPASS ’95), pages
109–122, 1995.

[3] D. N. Hoover, David Guaspari, and Polar Hu-
menn. Applications of formal methods to spec-
ification and safety of avionics software. Con-
tractor Report 4723, National Aeronautics and
Space Administration Langley Research Cen-
ter (NASA/LRC), Hampton VA 23681-0001,
November 1994.

[4] Steven D. Johnson. Synthesis of Digital Design-
s from Recursion Equations. MIT Press, Cam-
bridge, 1984.

[5] Steven D. Johnson. Manipulating logical organi-
zation with system factorizations. In Leeser and
Brown, editors, Hardware Specification, Veri-
fication and Synthesis: Mathematical Aspects,
volume 408 of LNCS, pages 260–281. Springer,
July 1989.

[6] Steven D. Johnson. A tabular language for sys-
tem design. In C. Michael Holloway and Kelly J.
Hayhurst, editors, Lfm97: Fourth NASA Lang-
ley Formal Methods Workshop, September 1997.
NASA Conference Publication 3356, in press.

[7] Steven D. Johnson and Bhaskar Bose. A system
for mechanized digital design derivation. In I-
FIP and ACM/SIGDA International Workshop
on Formal Methods in VLSI Design, 1991. Avail-
able as Indiana University Computer Science De-
partment Technical Report No. 323 (rev. 1997).

[8] Nancy G. Leveson, Mats Per Erik Heimdahl,
Holly Hildreth, and Jon Damon Reese. Re-
quirements specifiation for process-control sys-
tems. IEEE Transactions on Software Engineer-
ing, 20(9):684–707, September 1994.

[9] J Strother Moore. Symbolic simulation:
an ACL2 approach. In G. Gopalakrishnan
and P. Windley, editors, Formal Methods in
Computer-Aided Design (FMCAD’98), pages
334–350. Springer LNCS 1522, 1998.

[10] Kamlesh Rath, Venkatesh Choppella, and
Steven D. Johnson. Decomposition of sequential
behavior using interface specification and com-
plementation. VLSI Design Journal, 3(3-4):347–
358, 1995.

[11] M. Esen Tuna, Kamlesh Rath, and Steven D.
Johnson. Specification and synthesis of bounded
indirection. In Proceedings of the Fifth Great
Lakes Symposium on VLSI (GLSVLSI95), pages
86–89. IEEE, March 1995.

[12] Y. Xu, E. Cerny, X. Song, F. Corella, and O. Ait
Mohamed. Model checking for a first-order tem-
poral logic using multiway decision graphs. In
CAV’98. Springer, 1998.

FIB: (go, in) → (done*, v)

now u=0 now done* u v w

1 \ done* ¬go in 0 1

0 1 " u=0 \ v \
0 0 2 false u-1 v w

2 \ done* u=0 u w v+w

action introduction ⇒

FIB: (go, in) → (done*, v)

now u=0 now done* u v w x* y* z* ao*

1 \ done* ¬go in 0 1 \ \ \ P
0 1 " u=0 \ v \ \ \ \ P
0 0 2 false ao v w sub u 1 P
2 \ done* u=0 u w ao add v w P

where P =(case x* y*+z* y*-z*)

decomposition ⇒

FIB: (go, in, ao) → (done*, v, now, u, w, x*, y*, z*)

now u=0 now done* u v w x* y* z*

1 \ done* ¬go in 0 1 \ \ \
0 1 " u=0 \ v \ \ \ \
0 0 2 false ao v w sub u 1

2 \ done* u=0 u w ao add v w

ALU: (go, done*, v, u, now, w, x*, y*, z*) → (ao*)

now u=0 ao*

1 \ (case x y+z y-z)

0 1 (case x y+z y-z)

0 0 (case x y+z y-z)

2 \ (case x y+z y-z)

output restriction ⇒ input restriction ⇒

FIB: (go, in, ao) → (done*, v, x*, y*, z*)

now u=0 now done* u v w x* y* z*

1 \ done* ¬go in 0 1 \ \ \
0 1 " u=0 \ v \ \ \ \
0 0 2 false ao v w sub u 1

2 \ done* u=0 u w ao add v w

ALU: (u, now, x, y, z) → (ao*)

now u=0 ao*

1 \ (case x y+z y-z)

0 1 (case x y+z y-z)

0 0 (case x y+z y-z)

2 \ (case x y+z y-z)

decision generalization ⇒

ALU: (u, now, x, y, z) → (ao*)

now u=0 ao*

1 \ (case x y+z y-z)

0 \ (case x y+z y-z)

2 \ (case x y+z y-z)

decision generalization ⇒

ALU: (u, now, x, y, z) → (ao*)

now u=0 ao*

\ \ (case x y+z y-z)

decision introduction ⇒

ALU: (u, now, x, y, z) → (ao*)

x now u=0 ao*

\ \ \ (case x y+z y-z)

conversion ⇒

ALU: (u, now, x, y, z) → (ao*)

x now u=0 ao*

add \ \ y+z

sub \ \ y-z

decision elimination ⇒

Figure 2: A factorization from [6]

ALU: (u, now, x, y, z) → (ao*)

x ao*

add y+z

sub y-z

input restriction ⇒

ALU: (x, y, z) → (ao*)

x ao*

add y+z

sub y-z

Modeling and Validating Hybrid Systems Using VDM and

Mathematica

Bernhard K. Aichernig and Reinhold Kainhofer
Institute for Software Technology (IST),

Technical University Graz, M�unzgrabenstr. 11/II, 8010 Graz, Austria

Abstract

Hybrid systems are characterized by the hybrid
evolution of their state: A part of the state changes
discretely, the other part changes continuously over
time. Typically, modern control applications be-
long to this class of systems, where a digital con-
troller interacts with a physical environment. In
this article we illustrate how a combination of the
formal method VDM and the computer algebra sys-
tem Mathematica can be used to model and simu-
late both aspects: the control logic and the physics
involved. A new Mathematica package emulating
VDM-SL has been developed that allows the in-
tegration of di�erential equation systems into for-
mal speci�cations. The SAFER example from [11]
serves to demonstrate the new simulation capabili-
ties Mathematica adds: After the thruster selection
process, the astronaut's actual position and veloc-
ity is calculated by numerically solving Euler's and
Newton's equations for rotation and translation.
Furthermore, interactive validation is supported by
a graphical user interface and data animation.

1 Introduction

Modern control applications are realized through
microcontrollers executing rather complex control
logics. This complexity is increased by the fact that
control software interacts with a physical environ-
ment through actors and sensors. Such systems are
called hybrid systems due to the hybrid evolution of
their state: One part of the state (variables) changes
discretely, the other part changes continuously over
time.

Hybrid systems are excellent examples for moti-
vating the use of formal software development meth-
ods. First, their complexity calls for a real soft-
ware engineering discipline applying both, a pro-

cess model as well as a mathematical method. Sec-
ond, these kinds of systems are often safety-critical
which justi�es formal validation and veri�cation
techniques. Third, engineers in the control domain
are educated in the use of mathematical models for
designing dynamic systems.1 In our experience, the
o�er of a formal method for software development
is more often appreciated by control engineers, than
by software developers used to produce short cycle
products in 'Internet time'.

In [11] the hybrid system SAFER has been cho-
sen by NASA in order to introduce to formal spec-
i�cation and veri�cation techniques. SAFER is
an acronym for \Simpli�ed Aid For EVA (Ex-
travehicular Activity) Rescue". It is a small,
lightweight propulsive backpack system designed to
provide self-rescue capabilities to a NASA space
crewmember separated during an EVA. In this
NASA guidebook[11], SAFER is speci�ed formally
in the PVS notation and properties are formally
proved using the PVS theorem prover [12]. In the
guidebook the dynamic aspects are used to com-
pare the continuous domain model from spacecraft
attitude control with the discrete PVS model of
SAFER's control logic. It demonstrates that the
two models have the same goals: rigorous descrip-
tion and prediction of behavior but that the needed
mathematics and calculation techniques are di�er-
ent.

In [1, 2] Agerholm & Larsen have proposed
a cheaper testing based validation approach to
the SAFER example using an executable VDM-SL
model and the IFAD VDM-SL Toolbox [10, 7, 6].
They recommend the use of a speci�cation executor
and animator for raising the con�dence in a formal
model prior to formal proving.

We agree with Agerholm & Larsen's arguments
for such a \light-weight" approach to formal meth-

1The same holds for software developers coming from clas-

sical engineering disciplines.

ods in order to facilitate the technology transfer.
Since in several industrial projects performed at
our institute a similar experience has been made
[9, 15, 5], one of our research areas has become the
support of testing through formal methods [4].

However, neither the PVS nor the VDM-SL
model of SAFER did take the continuous physical
models into account. The reason is that, in gen-
eral, today's formal method tools are not well suited
for supporting continuous mathematics. This paper
shows a solution the problem.

In the following it is demonstrated how an ex-
plicit discrete model can be combined with the con-
tinuous physical model for validation and anima-
tion. With the right tool there is no reason why a
physical model should not be included in the valida-
tion process of a hybrid system. Just the opposite
is the case: [1] detected several cases where the in-
terface to a cut out automatic attitude hold (AAH)
control unit needed further clari�cation.

In this work the commercial computer algebra
system Mathematica [16] has been used to overcome
the gap between discrete and continuous mathemat-
ics. A VDM-SL package has been implemented that
allows to specify in the style of the Vienna Develop-
ment Method (VDM) inside Mathematica. Thus,
explicit discrete models can be tested in combi-
nation with di�erential equation systems modeling
physical behavior by solving the equations on the

y. Even pre- and post-condition checking is pos-
sible. Again, NASA's SAFER system serves as the
demonstrating example. The VDM-SL speci�cation
of [2] has been taken and extended with the physics
involved in SAFER, expressed through di�erential
equations. More precisely, the physical behavior is
movement in space, modeled by the laws for transla-
tion and rotation | Newton's and Euler's equations
for three dimensional space.

Beside the execution (testing) of hybrid models,
Mathematica's front-end supports the visual valida-
tion of such systems. The graphical user-interface
for SAFER's hand grip is implemented inside the
computer algebra system as well as a scienti�c graph
representing the movement of a crew-member using
SAFER. After each control cycle, actual physical
vectors like angular velocity or acceleration can be
inspected together with the logical status, e.g. the
thrusters �ring. Finally, it is even possible to an-
imate a sequence of performed control-cycles as a
movie showing the SAFER representation
ying.

The structure of the rest of the paper is as fol-
lows. First in Section 2 an overview of the SAFER
system is given, which will serve as the demonstrat-

Figure 1. SAFER thrusters.

ing example throughout the paper. This is followed
by a discussion of VDM-SL and its realization in-
side Mathematica in Section 3. Then, a description
of the discrete SAFER model is given in Section
4. Section 5 explains the di�erential equation sys-
tems modeling SAFER's physics and the coordinate
transformations needed. Then, Section 6 introduces
to the hybrid model and demonstrates the integra-
tion of VDM-SL and di�erential equation systems.
Next, the validation capabilities of our approach are
discussed in Section 7 and Section 8. In the �nal
Section 9 we draw some conclusion regarding the
presented work in particular, as well as possible fu-
ture approaches in general.

2 The SAFER System

The following overview of the SAFER system is
based on, and partly copied from, the NASA guide-
book [11], which describes a cut-down version of a
real SAFER system.

The Simpli�ed Aid for EVA Rescue (SAFER) is
a small, self-contained, backpack propulsion system
enabling free-
ying mobility for a NASA crewmem-
ber engaged in extravehicular activity (EVA). It is
intended for self-rescuing on Space Shuttle missions,
as well as during Space Station construction and op-
eration, in case a crewmember got separated from
the shuttle or station during an EVA. This type of
contingency can arise if a safety tether breaks, or
if it is not correctly fastened. SAFER attaches to
the underside of the Extravehicular Mobility Unit

(EMU) primary life support subsystem backpack
and is controlled by a single hand controller that
is attached to the EMU display and control mod-
ule. Figure 1 shows the backpack propulsion system
with the 24 gaseous-nitrogen (GN2) thrusters, four
in each of the positive and negative X , Y and Z

directions. For example, the thrusters denoted by
5-F1, 6-F2, 7-F3 and 8-F4 are �ring backwards (indi-
cated by the arrows) resulting in a forward motion.

The main focus of the discrete speci�cation is
on the thruster selection logic, which is rather com-
plex due to a required priorization of hand controller
commands. Various display units and switches
which are not directly related to the selection of the
thrusters have been ignored in our model. However,
in contrast to [11] and [1] the calculation of the con-
trol output in the Automatic Attitude Hold (AAH)
is not ignored, but simulated based on a dynamic
model of the physics discussed in Section 5.

Figure 2. Hand controller module of
SAFER.

The hand controller, shown in Figure 2, is a
four-axis mechanism with three rotary axes and one
transverse axis using a certain hand controller grip.
A command is generated by moving the grip from
the center null position to mechanical hard-stops
on the hand controller axes. Commands are ter-
minated by returning the grip to the center po-
sition. The hand controller can operate in two
modes, selected via a switch, either in translation
mode, where X (forward-backwards), Y (left-right),
Z (up-down) and pitch commands are available, or
in rotation mode, where roll, pitch, yaw and X

commands are available. The arrows in Figure 2
show the rotation mode commands. Note that X
and pitch commands are available in both modes.

Pitch commands are issued by twisting the hand
grip around its transverse axis, while the other com-
mands are obtained around the rotary axis.

A push-button switch on top of the grip initiates
and terminates AAH according to a certain proto-
col. If the button is pushed down once the AAH is
initiated, while the AAH is deactivated if the button
is pushed twice within 0.5 seconds.

As mentioned above there are various priorities
among commands that make the thruster selec-
tion logic rather complicated. Translational com-
mands issued from the hand controller are priori-
tized, providing acceleration along a single transla-
tional axis, with the priority X �rst, Y second, and
Z third. When rotation and translation commands
are present simultaneously from the hand controller,
rotations take higher priority and translations are
suppressed. Moreover, rotational commands from
the hand grip take priority over control output from
the AAH, and the corresponding rotation axes of
the AAH remain o� until the AAH is reinitialized.
However, if hand grip rotations are present at the
time when the AAH is initiated, the corresponding
hand controller axes are subsequently ignored, until
the AAH is deactivated.

In [1] it is explained how a speci�cation inter-
preter tool facilitates the validation of the require-
ments listed in the appendix of the NASA guide-
book. Moreover, it is demonstrated that formal val-
idation techniques uncover open issues in informal
requirements even if they seem to be straightfor-
ward and clear.

The same validation techniques as discussed in
[1] can be applied in our Mathematica based frame-
work | and more. However, before we discuss the
value added through a hybrid model, in the follow-
ing section, the realization of our VDM-SL package
is discussed.

3 VDM-SL in Mathematica

VDM-SL is the speci�cation language of the Vi-
enna Development Method (VDM) [10, 7]. VDM
is a widely used formal method, and it can be ap-
plied to the construction of a large variety of sys-
tems. It is a model-oriented method, i.e. its for-
mal descriptions (speci�cations) consist of an ex-
plicit model of the system being constructed. More
precisely mathematical objects like sets, sequences
and �nite mappings (maps) are used to model a
system's global state. Additional logic constraints,
called data-invariants, allow one to model informal
requirements by further restricting speci�ed data-

types. For validation purposes the functionality
may be speci�ed explicitly in an executable subset
of VDM-SL. In addition, pre- and post-conditions
state what must hold before and after the evalua-
tion of a system's operation. Although VDM-SL
is called a general purpose speci�cation language it
does not support the speci�cation of dynamic sys-
tems. The language's ISO-standard [13] does not
even include standard functions like sine or cosine.

Here, as the name indicates, Mathematica's
strengths supplement our combined approach.
Mathematica is a symbolic algebra system that of-
fers the opportunity of solving arbitrary non-linear
as well as linear systems of equations. Mathemat-
ica's language interpreter is in fact a rewriting sys-
tem providing an untyped functional programming
language. For an introduction to functional pro-
gramming in Mathematica see [3]. This program-
ming language has been used in order to de�ne a
package emulating the speci�cation language VDM-
SL. By emulating we express the fact that the pack-
age does not allow one to write speci�cations in
VDM-SL's concrete syntax, but in its abstract syn-
tax with some pretty printing for VDM-SL output.

Mathematica's user interface are so called note-
books, fancy editors structured in cells for input,
output or plain text. Entering a Mathematica ex-
pression in an input cell, the system tries to evaluate
this input through a rewriting procedure based on
pattern matching.

The following language constructs have been
added to the standard language in order to import
the VDM-SL model from [2]:

� abstract datatypes for composite types, sets,
sequences and maps

� comprehension expressions for sets, sequences
and maps

� let and cases expressions

� operators for propositional and predicate logic

� types optionally restricted by data-invariants

� value and global state de�nitions

� typed function/operation de�nitions with pre-
and post-conditions

Some of the items above deserve a more detailed
discussion.

Comprehensions

A powerful feature of a speci�cation language
like VDM-SL is its ability to construct collection
types like sets, sequences and maps through com-
prehensions. For example, a set-comprehension de-
�nes a set through an arbitrary expression describ-
ing the set-elements with its free variables ranging
over a set of values, such that an optional condi-
tion holds. The following example demonstrates
the value added through a computer algebra sys-
tem. The set-comprehension

set[xjfx 2 Zg � fx6 � 44x
5 + 318x

4 + 4102x
3

�4461x
2 + 550x+ 8750 == 0g]

represents a set of elements x, where x is an integer
number such that the equation holds.

The resulting set2

set[�7;�1; 25]

demonstrates that, unlike IFAD's VDM-SL inter-
preter, comprehensions ranging over in�nite sets
may be evaluated.

Types

As already mentioned, in contrast to VDM,
Mathematica has an untyped language. Conse-
quently, no type checking mechanism is available.
However, types are an important tool for specifying
a data-model in VDM. Therefore, type declarations
of the form Type[name; type] have been included,
where type is one of the prede�ned VDM-SL types,
like basic types, composite types, sets ... For exam-
ple, a type ISet representing a set of natural num-
bers might be declared by Type[ISet; set[N]].

Optionally, a type can be further constrained by
a data-invariant condition. Such invariant types
are de�ned by Type[name; type; Invariant� >

predicate]. The predicate is de�ned by a lambda
expression mapping type to a Boolean value. All
the invariants are globally stored in the system for
invariant checking, before and after the evaluation
of a VDM function.

Internally, a type is translated to a Mathematica
pattern, matching those values the type denotes.
Invariant types are supported by the possibility of
de�ning patterns with arbitrary predicates. These
patterns restrict the argument range in the de�ni-
tion of typed VDM functions.

2The six solutions including double and complex solutions

are: �7;�1; 1� I; 1 + I; 25; 25.

Functions

Using the VDM-SL package, typed functions
with pre- and post-conditions can be de�ned using
the constructor

VDMFunction[id, sig, id[vars] := body, pre, post]

with the following parameters:

id the name of the function,

sig the signature of the function,

id[vars] := body the function de�nition,

pre an optional pre-condition stating what must
hold before the evaluation such that the post-
condition holds,

post an optional post-condition stating what must
hold after the evaluation.

VDMFunction realizes a complex call to Mathemat-
ica's internal Function call and emulates the checks
for

� the signature types,

� pre- and post-condition,

� data-invariants.

4 Discrete Model

In order to demonstrate the Mathematica pack-
age the same functions for the thruster selection
logic as in [1] are presented in this section. The
six degree-of-freedom of the translation and rota-
tion commands is modeled using a composite type:

Type[SixDofCommand, Composite[f"tran", TranCommandg,
f"rot", RotCommand g]]

whose two �elds are �nite maps from translation
and rotation axis respectively to axis commands.
For example the type of translation commands is
de�ned as follows:

Type[TranCommand, TranAxis -> Axiscommand,
Invariant -> (dom[#] == set[X,Y,Z]&)]

where the invariant ensures that command maps
are total. Here, the invariant predicate is de�ned
by a lambda expression in Mathematica's notation
of pure functions. The type of rotation commands
is de�ned similarly. Enumerated types are used for
axis commands and translation and rotation axes:

VDMFunction[
SelectedThrusters,
AUX`SixDofCommand � AUX`RotCommand �
set[AUX`RotAxis] � set[AUX`RotAxis]

-> ThrusterSet,
SelectedThrusters[hcm, aah, actAxes, ignHcm] :=
let[ftran, rot, bfMandatory,bfOptional,

lrudMandatory,lrudOptional,bfThr,lrudThrg,
ftran, rotg =

(IntegratedCommands[hcm,aah,actAxes,ignHcm]
/. SixDofCommand[tr_,ro_]:->tr,ro);

fbfMandatory, bfOptionalg = BFThrusters[tran[X],
rot[PITCH],
rot[YAW]];

flrudMandatory, lrudOptionalg =
LRUDThrusters[tran[Y],

tran[Z],
rot[ROLL]];

bfThr = If[(rot[ROLL] === ZERO),
bfOptional [bfMandatory,
bfMandatory];

lrudThr = If[(rot[PITCH] === ZERO) and
(rot[YAW] === ZERO),
lrudOptional [lrudMandatory,
lrudMandatory];

set @@ (bfThr [lrudThr)
]

];

Figure 3. The SelectedThrusters function.

Type[AxisCommand, NEG | ZERO | POS];

Type[TranAxis, X | Y | Z];

Type[RotAxis, ROLL | PITCH | YAW]

In the SelectedThrusters function in Fig-
ure 3 grip commands from the hand controller
(with six-degree-of freedom commands) are in-
tegrated with the AAH control output. The
IntegratedCommands function prioritizes hand con-
troller and AAH commands.

Based on these commands, thrusters for back and
forward accelerations and left, right, up and down
accelerations are calculated by two separate func-
tions. Figure 4 presents cut-down versions of these
functions. These represent a kind of look-up ta-
bles, modeled using cases expressions. Note that
they return two sets of thruster names, represent-
ing mandatory and optional settings respectively.

5 Physics Involved in SAFER

This section presents the continuous model of
the physics involved in our hybrid model. For the
SAFER example, translation and rotation equations
from mechanics are suÆcient for modeling the mo-
tion of a crewmember using the propulsion system.
The purpose of this model is twofold: First, we need
to calculate the sensor inputs of angular velocity for
simulating the AAH. Second, in order to visualize

VDMFunction[
BFThrusters,

AUX`AxisCommand � AUX`AxisCommand � AUX`AxisCommand
-> ThrusterSet � ThrusterSet,

BFThrusters[A, B, C] :=
cases[fA, B, Cg,
fNEG, ZERO, ZEROg -> ffB4g, fB2,B3gg,
fZERO, ZERO, ZEROg -> ffg, fgg,
fPOS, NEG, ZEROg -> ffF1,F2g, fgg,
...

]
];

VDMFunction[
LRUDThrusters,

AUX`AxisCommand � AUX`AxisCommand � AUX`AxisCommand
-> ThrusterSet � ThrusterSet,

LRUDThrusters[A, B, C] :=
cases[fA, B, Cg,
fNEG, NEG, ZEROg -> ffg, fgg,
fNEG, ZERO, ZEROg -> ffL1R,L3Rg, fL1F,L3Fgg,
fPOS, ZERO, POSg -> ffR2Rg, fR2F,R4Fgg,
...

]
];

Figure 4. Extracts from BFThrusters and
LRUDThrusters.

the SAFER movement, absolute coordinates have
to be determined. The mathematics needed can be
found in the standard literature of mechanics, like
[8].

Translation

The translation of a crewmember wearing
SAFER is described by Newton's second law of mo-
tion expressed by

F = m _v = _p (1)

where F , m, v and p denote force vector, mass,
velocity vector and impulse vector. It states that
\The time rate of change of the momentum of a
particle is proportional to the force applied to the
particle and in the direction of the force."

Rotation

The rotation is modeled by three equations
known as the Euler's equations of motion for the
rotation of a rigid body.

Denote by
 the angular velocity de�ned with re-
spect to the center of mass, and by I the moments
of inertia. The equations describing the body rota-

tions are then given by

I1 _
1 + (I3 � I2)
2
3 = Q1 (2)

I2 _
2 + (I1 � I3)
3
1 = Q2 (3)

I3 _
3 + (I2 � I1)
1
2 = Q3 (4)

or as a vector equation where I is a diagonal matrix:

I � _
 +
� I �
 = Q (5)

Qi denotes a torque causing a rotation around the
i-axis, in the body's own coordinate system. Here,
the torque is given by the sum over the thrusters �r-
ing. Actually, a component Qth is calculated by the
cross product of a thruster's position vector relative
to the center of mass and its force. SAFER does not
use proportional gas jets, but thrusters whose valves
are open or not, which simpli�es the calculation.

Motion

In order to combine translation and rotation in a
single model of motion, suitable for our purposes,
coordinate transformations are necessary. More
precisely, the �xed coordinate system values for vi-
sualization (position and velocity) have to be related
to SAFER's coordinate system values (angular ve-
locity).

As
 is calculated in the body's own coordinate
system, they have to be transformed back to the
�xed coordinate system. Given the Euler angles ',
� and that denote the deviation of the �xed x, y
and z axis, the angular velocities can be calculated
according to the following formula.

1 = _' sin � sin + _� cos (6)

2 = _' sin � cos �
_� sin (7)

3 = _' cos � + _ (8)

The derivation of these equations can be found in
[8]. Using vector notation we get the equation:

 = D3() �D1(�) � (_�; 0; _')
T + (0; 0; _)T (9)

D1 =

0
@
1 0 0
0 cos � sin �
0 � sin � cos �

1
A (10)

D3 =

0
@

cos sin 0
� sin cos 0

0 0 1

1
A (11)

where D1 and D3 are rotation matrices that turn
the coordinate system by a given angle.

D1 and D3 are used to transform a vector from
our �xed coordinate system to a turned coordinate
system. For translation motion, the thruster's force
vector F has to be transformed from SAFER's coor-
dinate system to the �xed one using the transposed
rotation matrices:

(D3() �D1(�) �D3('))
T

Summarizing, these four vector di�erential equa-
tions are suÆcient for modeling SAFER's motion
over time:

v = _x (12)

m � v = (D3() �D1(�) �D3('))
TF (13)

I � _
 +
� I �
 = Q (14)

 = D3() �D1(�) � (_�; 0; _')
T + (0; 0; _)T (15)

Solving these equations with given thruster forces
results in SAFER's position vector x(t) and the an-
gular velocity
(t) used for AAH.

Alternatives to the Euler's equations model are
possible. For example, an aproach could have in-
volved the less computationally intensive quater-
nions. However, for validation purposes the model
should be as intuitive as possible, here eÆciency
plays a minor role.

6 A Hybrid Model

The hybrid model of SAFER consists of the hand
controller and the Automatic Attitude Hold as its
discrete parts on one side and the equations of mo-
tion as the continuous part on the other side. Both
are modeled in Mathematica, the �rst in the form of
the VDM-SL speci�cation using our VDM-SL em-
ulation package, the later in the form of ordinary
di�erential equations in Mathematica notation.

The combination of the discrete control system
and the continuous physical model during the test-
ing phase carries certain advantages:

Not only can the system speci�cation be tested
in an (idealized) physical simulation, but also the
system parameters like the force of the thrusters and
the moments of inertia of the backpack can easily be
adjusted until the system responds in a way suitable
for practical use.

This is not a very rigorous approach, and it is not
intended to replace other testing tools and meth-
ods. Rather it can serve as a valuable supplemen-
tary tool.

VDMFunction[
ControlCycle,
SwitchPositions � HandGripPosition �

RotCommand � InertialRefSensors -> ThrusterSet,

ControlCycle[SwitchPositions[mode_, aah_], rawGrip,
aahCmd, IRUSensors]:=

let[f
gripCmd=HCM`GripCommand[rawGrip, mode],
thrusters=SelectedThrusters[gripCmd, aahCmd,

AAH`ActiveAxes[], AAH`IgnoreHcm[]]
g,
AAH`Transition[IRUSensors, aah, gripCmd, SAFER`clock];
SAFER`clock=SAFER`clock+1;
PosData=CalcNewPosition[thrusters];
thrusters

],
True,
card[RESULT] � 4 ^ ThrusterConsistency[RESULT]

];

VDMFunction[
SensorControlCycle,
SwitchPositions � HandGripPosition -> ThrusterSet,

SensorControlCycle[SwitchPositions[mode_, aah_],
rawGrip]:=

ControlCycle[SwitchPositions[mode,aah],rawGrip,
AAHControlOut[Sensors], Sensors]

];

Figure 5. The ControlCycle function.

The Control Cycle

The ControlCycle function (Figure 5) integrates
the discrete model of hand control, thruster se-
lection and Automatic Attitude Hold (AAH) with
the continuous physical model of motion presented
above.

The Control Cycle is implemented in two di�er-
ent functions. ControlCycle takes the state of the
hand control (switches and hand grip) as well as the
already calculated or manually entered AAH com-
mands and the sensor values. SensorControlCycle
takes the values of the sensors (here simulated by
the solutions of the equations of motion of the pre-
vious control cycle) and determines which thrusters
are invoked by the AAH. These are then passed on
to ControlCycle.

After determining the active thrusters and the
AAH state, the di�erential equations are solved nu-
merically in the CalcNewPosition function and the
current position is updated. These results simulate
the values measured by the sensors (with exception
of the heat sensors, which are left out in our model)
providing data for AAH. This part of the control
system is completely left out in [1] and only included
in the form of two unspeci�ed functions in the PVS
model [11].

Here the SAFER state is not as trivial as in [1]
where it holds only a clock variable.

VDMFunction[
AAHControlOut,
InertialRefSensors->RotCommand,

AAHControlOut[IRUSensors]:=
let[frr=IRUSensors."RollRate",

pr=IRUSensors."PitchRate",
yr=IRUSensors."YawRate"g,

map[
ROLL->Which[

rr � -EpsRoll,POS,
rr � EpsRoll, NEG,
True, ZERO],

...
]]

];

Figure 6. The Bang Bang algorithm for
AAH.

State[SAFER,
Type[clock, N],
Type[PosData, PositionData],
Type[Sensors, InertialRefSensors],
Type[step, Rpos],
Type[PosDataList, List[PositionData]],

init[SAFER] := SAFER[0,
PositionData[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
InertialRefSensors[0, 0, 0, 0, 0, 0, 0, 0, 0],
1/4, fff0, 0, 0g, f0, 0, 0g, f0, 0, 0g, f0, 0, 0ggg]

];

The state above also includes the current posi-
tion, Euler angles and velocities stored in a variable
of type PositionData.

Even the past position data is stored for provid-
ing full information about SAFER's trajectory. For
simulation this data will be used to display the his-
tory as a Mathematica "movie" showing the astro-
naut
ying around in the coordinate system.

Automatic Attitude Hold (AAH)

Simulating the measured sensor values by the re-
sults of the equations of motion provides the op-
portunity of including the Automatic Attitude Hold
mechanism by a simple Bang Bang [11] algorithm: If
the angular velocity for an axis where AAH is turned
on exceeds a certain threshold, selected thrusters
are �red in order to slow down this rotation (Fig-
ure 6). AAH is limited to this mechanism because
SAFER is only based on simple thrusters with two
states: on and o�.

The Differential Equations

The equations of motion used to determine the
new position of the astronaut are Newton's and
Euler's equations described above. Although this

model neglects any gravitational forces and other
disturbing in
uences, they could easily be added by
an additional acceleration in the equations or ran-
dom
uctuations applied to the results of the di�er-
ential equations.

The new position is obtained by numerically solv-
ing the equations rather than algebraically which is
less time-eÆcient, beside the fact that the algebraic
solution is not necessary as only the result at time
step is needed for simulation.

Since the equations are only slightly coupled,
they can be solved in four steps, which is numeri-
cally more stable than solving them all at once. This
functionality is provided by Mathematica's NDSolve
function, which takes the di�erential equations and
the initial conditions and returns numeric functions
that approximate the exact solutions of the equa-
tions. In this case the trajectory is calculated piece-
wise: in every control cycle the trajectory only for
that cycle is solved using the position before the cy-
cle as the initial conditions and the force and torque
applied by the thrusters as parameters. These can
easily be calculated, the force by a simple vector ad-
dition of the forces applied by every single thruster,
and the torque by adding up the cross products of
the thruster positions with the force applied by that
thruster.

First, Euler's equation in the astronaut's coor-
dinate system is solved giving the angular velocity.
This needs the forces and the torque applied by the
�red thrusters as parameters. The result is then
transformed back to the �xed coordinate system
and used to solve the di�erential equation for the
Euler angles. In a third step Newton's equation can
be solved using the results from the previous equa-
tions. Finally, a simple integration of the velocities
gives the position of the astronaut.

These numerical solutions to the di�erential
equations can also be used to investigate stability.
In the simpli�ed case without any external forces
like gravitation, this might not be so interesting,
but as soon as external forces are modeled into the
di�erential equations, stability is a crucial concern.
What happens if the hand controller keeps in the
same position over a long period of time? Such
questions can easily be answered by solving the dif-
ferential equations for a time period longer than just
the control cycle.

7 Simulating SAFER

Mathematica does not only provide algebraic and
numeric functionality, but also an extensive reper-

toire of plotting functions. Thus Mathematica has
also been used to visualize SAFER's current posi-
tion together with other state information.

 Hand Grip input control

Mode

Translation

Rotation

Button

Up

Down

lt ��yaw rt ��yaw

fw � � �

� � �

bw � � �

z��roll

up

zero

down

pitch

pitch up ���

zero

pitch down

 AAH control Output (optional)

Determine AAH output :

Auto

Enter AAH Output :

roll left

zero

roll right

pitch up

zero

pitch down

yaw left

zero

yaw right

Cycles � 1� ; Reset Position Run Control cycle

Figure 7. The GUI for the hand controller.

An interface to the hand controller similar to that
in [2] is provided in Mathematica (Figure 7). It
contains buttons for all the hand controller states
as well as for manual input of the AAH output for
overriding the simulated AAH in the model.

Pressing one of the buttons sets a global variable
that is used to determine the parameters passed to
the ControlCycle function. Additionally, the "Cy-
cles=1" button determines how many control cycles
should be evaluated when the "Run Control Cycle"
button is pressed.

Pressing "Run Control Cycle" initiates the con-
trol cycle and after calculating the new position
prints out a plot of the astronaut's path so far to-
gether with his orientation indicated by the axes of
his own coordinate system (Figure 8). Additionally,
his velocity and angular velocity are shown as vec-
tors. Optionally a table with the list of the �red
thrusters as well as the axes where AAH is turned
on is printed.

Since all the previous position data is stored,
Mathematica can even animate this graph so that
one can inspect the SAFER moving through space.

A graphical interface to the simulation like in
Figure 7 is interesting when testing the system's be-
havior in general. However, when adjusting param-
eters or testing speci�c cases, it's more convenient
to run the control cycles directly using Mathemat-
ica input commands. Figure 9 shows the input to
create Figure 8.

In [1] the visualization is done outside the
toolbox using dynamic link modules, which are
programmed speci�cally for this one application.
In Mathematica, changing only the di�erential
equations suÆces to include other in
uences like

-10

-5

0

X

-10
-7.5

-5
-2.5

0
Y

0

2

4

6

Z

-10

-5

0

0

2

4

Figure 8. A sample trajectory of the
SAFER.

gravity, as Mathematica chooses the algorithm to
solve the equations.

However, testing in Mathematica is not restricted
to graphical simulation. Like in [1], the output of
the thruster selection logic can be validated by enu-
merating all possible states of the Hand controller,
or in an extended version enumerating all possible
states of the hand controller and the AAH. Fig-
ure 10 shows these functions formulated in Math-
ematica's VDM-SL notation. On every possible
state, ControlCycle is applied to calculate the �red
thrusters. The result of this large map comprehen-
sion then has to be investigated manually.

Another important part in the process of veri-
fying software would be coverage testing, which is
unfortunately not possible in Mathematica.

8 Enhanced Analysis of the System

The simulation possibilities described in the last
section can be exploited for risk and safety analysis
of the system. A very simple application is the case
when one of the thrusters fails due to a mechanical
defect or an iced valve. The most important ques-
tions in this scenario are whether the astronaut will
still be able to navigate the system, and whether it
is possible to return before the air or the nitrogen
for the thrusters is used up.

We investigated the functionality of AAH in the
case where one thruster (6-F2) fails. Figure 11
shows the angular velocity of the system, with the

ResetSAFERPosition[];
(* 1 right *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[ZERO,ZERO,POS,ZERO]],f1g];
(* 3 yaw *)
Do[SensorControlCycle[SwitchPositions[ROT,UP],

HandGripPosition[ZERO,ZERO,POS,ZERO]],f3g];
(* 15 "right" *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[ZERO,ZERO,POS,ZERO]],f15g];
(* wait *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[ZERO,ZERO,POS,ZERO]],f2g];
(* 3 up *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[POS,ZERO,ZERO,ZERO]],f3g];
(* 6 down *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[NEG,ZERO,ZERO,ZERO]],f6g];
(* 5 up *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[POS,ZERO,ZERO,ZERO]],f5g];
(* nothing, just keep floating in space *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[ZERO,ZERO,ZERO,ZERO]],f6g];
(* finally, 2 down *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[NEG,ZERO,ZERO,ZERO]],f2g];

Figure 9. The commands to create the sam-
ple trajectory.

hand grip set to forward acceleration. Just be-
fore cycle 4 is initiated, thruster 6-F2 breaks, which
would be used in this acceleration. This leaves
thruster 7-F3 applying an additional torque to the
system, which results in an increasing angular ve-
locity. In cycles 9 and 10 the astronaut initiates
AAH, but keeps the forward acceleration (cycles 10
to 17 and 20 to 25). AAH is now only able to com-
pensate the additional torque, but not to reduce the
angular velocity. Only when the forward accelera-
tion is turned o� (cycles 17 to 20 and 25 to 30),
AAH shows e�ect.

The functionality of AAH could be improved by
immediately excluding thruster 7-F3 from the trans-
lational commands when thruster 6-F2 fails (and
thus allowing thruster 3-B3 to be used by AAH in-
stead of 6-F2). This would require a slightly modi-
�ed and more complex thruster selection logic, pro-
viding a higher level of safety for the astronaut.

9 Concluding Remarks

In this article a hybrid model of NASA's SAFER
system has been presented using the speci�cation
language VDM-SL inside the computer algebra sys-
tem Mathematica. We demonstrated that the im-
plementation of a VDM-SL package for Mathemat-
ica provides both, VDM-SL's powerful language fea-

VDMFunction[ControlCycleTest,
SwitchPositions � HandGripPosition � RotCommand ->
ThrusterSet,

ControlCycleTest[SwitchPositions[mode_, aah_], rawGrip,
aahCmd]:=

SelectedThrusters[HCM`GripCommand[rawGrip, mode],
aahCmd, AAH`ActiveAxes[], AAH`IgnoreHcm[]],

True,
card[RESULT]� 4 ^ ThrusterConsistency[RESULT]

];

VDMFunction[BigTest,
fg->(HCM`SwitchPositions � HCM`HandGripPosition �

AUXIL`RotCommand -> ThrusterSet),
BigTest[]:= map[(fswitch, grip, aahLawg->

ControlCycleTest[switch, grip, aahLaw])|
fswitch2switchPositions, grip2gripPositions,
aahLaw2allRotCommands g]

]

VDMFunction[HugeTest,
fg->(HCM`SwitchPositions � HCM`HandGripPosition �

AUXIL`RotCommand -> ThrusterSet),
HugeTest[]:= map[(fswitch, grip, aahLawg->

ControlCycleTest[switch, grip, aahLaw])|
fswitch2switchPositions, grip2allGripPositions,
aahLaw2allRotCommandsg]

];

Figure 10. The testing functions.

tures, like comprehensions, as well as the mathemat-
ical power of Mathematica, e.g. solving di�erential
equation systems.

The SAFER example shows the validation pos-
sibilities of such a combined tool. Like in [1] the
complex discrete model of the control logic can be
validated through testing. This is a cheap technique
for raising the con�dence that the right model has
been speci�ed prior to the application of more ex-
pensive formal proof techniques.

However, with the right tool, there is no rea-
son why the continuous models of a hybrid system
should be excluded from validation. Such a hybrid
validation is more suitable for �nding unjusti�ed do-
main assumptions made in the discrete model. We
strongly propose such validations, due to the fact
that making wrong assumptions is the weak point
of formal veri�cation techniques, possibly leading to
correct proofs of the wrong model.

Furthermore, we demonstrated that the visual-
ization features of Mathematica provide a conve-
nient way to communicate a model to a customer.
Moreover, in contrast to [1], our visualization is a
functional graph that facilitates the communication
to control experts as well as to customers with a
technical expertise.

In the Irish school of VDM, Mathematica has
been used to explore explicit VDM speci�cations
[14], but to our present knowledge not for modeling
hybrid systems.

5 10 15 20 25
Cycle

0.5

1

1.5

2

2.5

Angular

velocity

Figure 11. Angular velocity with a broken
thruster, AAH initiated in cycle 9.

Note that the conclusion of our work is not that
Mathematica is the best tool for validating hybrid
system speci�cations. Our Mathematica approach
has its disadvantages, too: Our VDM-SL represen-
tation is not as readable as the notation of standard
VDM-SL and a typed language would be more suit-
able for speci�cation purposes. Rather than propos-
ing a certain tool, our work points out the features
a powerful toolset should provide for validating hy-
brid systems.

Another future approach would be the integra-
tion of a classic formal method tool with a com-
puter algebra system. For example a combination
of Mathematica with the IFAD VDM-SL Toolbox
used in [1] would be a possibility. This could be re-
alized with the lately developed CORBA API of this
tool, that enables access to the toolbox as a CORBA
object and thus calling its VDM-SL interpreter from
programs implemented in C or Java. Mathematica
provides an interface through its MathLink facility.

Summarizing, we feel that our approach of hy-
brid validation is a valuable technique for produc-
ing systems of higher reliability and hope that it will
stimulate further research in this area.

Acknowledgment

Many thanks to William Milam from the Ford
Motor Company. At the FME'96 conference, he
pointed the �rst author to the industrial needs of an-
alytical methods and tools for hybrid systems. Pe-
ter Gorm Larsen and Peter Lucas were kind enough
to comment on a draft of this paper for which we
are very thankful. Finally, the authors would like
to thank the four anonymous referees for the inter-

esting comments and suggestions.

References

[1] Sten Agerholm and Peter Gorm Larsen. Model-
ing and validating SAFER in VDM-SL. In Pro-
ceedings of the Fourth NASA Langley Formal
Methods Workshop (Lfm97). NASA, Septem-
ber 1997. http://shemesh.larc.nasa.gov/

fm/Lfm97/proceedings/.

[2] Sten Agerholm and Peter Gorm Larsen.
SAFER speci�cation in VDM-SL. Technical re-
port, IFAD, September 1997. VDM Examples
Repository: http://www.ifad.dk/Products/

VDMTools/vdmsl-examples.htm.

[3] Bernhard K. Aichernig. Teaching programming
to the uninitiated using Mathematica. Techni-
cal Report IST-TEC-98-03, Institute for Soft-
ware Technology, TU-Graz, Austria, May 1998.

[4] Bernhard K. Aichernig. Automated black-
box testing with abstract VDM oracles. In
M. Felici, K. Kanoun, and A. Pasquini, editors,
Computer Safety, Reliability and Security: pro-
ceedings of the 18th International Conference,
SAFECOMP'99, Toulouse, France, September
1999, volume 1698 of Lecture Notes in Com-
puter Science, pages 250{259. Springer, 1999.

[5] Georg Droschl. Events and scenarios in VDM
and PVS. In 3rd Irish Workshop in For-
mal Methods, Galway, Electronic Workshops in
Computing. Springer-Verlag, July 1999.

[6] John Fitzgerald. Information on VDM. VDM:
http://www.csr.newcastle.ac.uk/vdm/.

[7] John Fitzgerald and Peter Gorm Larsen. Mod-
elling Sytems, Practical Tools and Techniques.
Cambridge University Press, 1998.

[8] Walter Hauser. Introduction to the Principles
of Mechanics. Addison-Wesley, 1965.

[9] Johann H�orl and Bernhard K. Aichernig. For-
mal speci�cation of a voice communication
system used in air traÆc control, an indus-
trial application of light-weight formal meth-
ods using VDM++ (abstract). In J.M.
Wing, J. Woodcock, and J. Davies, edi-
tors, Proceedings of FM'99 { Formal Meth-
ods, World Congress on Formal Methods
in the Development of Computing Systems,
Toulouse, France, September 1999, volume

1709 of Lecture Notes in Computer Sci-
ence, page 1868. Springer, 1999. Full re-
port at ftp://ftp.ist.tu-graz.ac.at/pub/
publications/IST-TEC-99-03.ps.gz.

[10] Cli� B. Jones. Systematic Software Develop-
ment Using VDM. Prentice-Hall International,
Englewood Cli�s, New Jersey, second edition,
1990.

[11] John C. Kelly and Kathryn Kemp. Formal
methods, speci�cation and veri�cation guide-
book for software and computer systems, vol-
ume II: A practitioner's companion, planning
and technology insertion. Technical Report
NASA-GB-001-97, NASA, Washington, DC
20546, May 1997.

[12] SRI Computer Science Laboratory. The PVS
speci�cation and veri�cation system. PVS:
http://pvs.csl.sri.com/.

[13] P. G. Larsen, B. S. Hansen, H. Bruun,
N. Plat, H. Toetenel, D. J. Andrews, J. Dawes,
G. Parkin, et al. Information technology |
Programming languages, their environments
and system software interfaces | Vienna De-
velopment Method | Speci�cation Language
| Part 1: Base language, December 1996. In-
ternational Standard ISO/IEC 13817-1.

[14] Colman Reilly. Exploring speci�cations with
Mathematica. In Proceedings of the Z User
Workshop, Department of Computer Science,
Trinity College, Dublin, 1995.

[15] Rudi Schlatte and Bernhard K. Aichernig.
Database development of a work-
ow planning
and tracking system using VDM-SL. In John
Fitzgerald and Peter Gorm Larsen, editors,
Workshop Materials: VDM in Practice!, Part
of the FM'99 World Congress on Formal Meth-
ods, Toulouse, September 1999.

[16] Stephen Wolfram. The Mathematica Book.
Wolfram Media/Cambridge University Press,
3rd edition, 1996.

Modeling the Fault Tolerant Capability of a Flight Control System:
An Exercise in SCR Specification�

Chris Alexander
Azimuth Inc.

1000 Technology Drive
Fairmont, WV 26554

chrisa@azimuthwv.com

Vittorio Cortellessa
Comp. Sc. and Electr. Eng.

West Virginia University
Morgantown, WV 26506-6109

vittorio@csee.wvu.edu

Diego Del Gobbo
Mech. and Aerosp. Eng.
West Virginia University
Morgantown, WV 26506
delgobbo@cemr.wvu.edu

Ali Mili y

Comp. Sc. and Electr. Eng.
West Virginia University

Morgantown, WV 26506-6109
amili@csee.wvu.edu

Marcello Napolitano
Mech. and Aerosp. Eng.
West Virginia University
Morgantown, WV 26506
mnapolit@cemr.wvu.edu

Abstract

In life-critical and mission-critical applications, it is im-
portant to make provisions for a wide range of contin-
gencies, by providing means for fault tolerance. In this
paper, we discuss the specification of a flight control sys-
tem that is fault tolerant with respect to sensor faults. Re-
dundancy is provided by analytical relations that hold be-
tween sensor readings; depending on the conditions, this
redundancy can be used to detect, identify and accommo-
date sensor faults.

Keywords

Flight Control Systems; Fault Tolerance; Flight Dynam-
ics; Sensor Failure Detection, Identification, and Accom-
modation.

1 Introduction

Providing the fault tolerant capability (FTC) to control
systems is a major issue in domains where system fault oc-
currences may give rise to unrecoverable damages to peo-
ple and/or to very expensive devices (e.g., nuclear plants,
space missions, aircrafts). In this paper we discuss mod-
eling and specifying the fault tolerant capability of a flight
control system (FCS), with respect to sensor faults. Rel-
evant issues include: achieving fault tolerance for FCS’s,
defining fault domain (i.e., specifying fault hypotheses),

�This work is supported by a grant from NASA’s Dryden Flight Re-
search Center.

yCorrespondence author.

adequate modeling, and adequate representation of the
model.

A typical approach to introduce fault tolerance in a con-
trol system is physical redundancy of components. The
detection/identification of a fault is achieved by compar-
ing the behavior of replicated components accomplish-
ing the same task and having the same features. Cost
and complexity considerations led recently an increasing
interest in alternative approaches, mostly based on an-
alytical redundancy. Outputs of components measuring
different but related items are observed in order to de-
tect/identify the faulty component. We go towards the
specification of the fault tolerant capability (based on an-
alytical redundancy) for a FCS, bounded to sensors faults.

We only focus on critical sensors, i.e. sensors measur-
ing modes of the aircraft that change too quickly to be
controlled by the pilot. We neglect multiple, transient and
simultaneous faults. Therefore the goal of this work is
not producing specifications for a complete fault tolerant
capability of a real world FCS, but conceptually address-
ing most of issues that also persist in large scale systems.
The space of sensor readings is partitioned, under fault hy-
potheses, and for each partition analytical relations among
system variables are introduced in order to characterize
the partition and to express constraints that must be sat-
isfied when a fault occurs while system conditions fall in
the partition, in order to guarantee stability and maneuver-
ability of the aircraft.

The formulation of such relations using the Software
Cost Reduction (SCR) notation is based on the tabular
representation of variable behavior in SCR: it is straight-
forward to introduce the expression whose result is the

value that a variable must assume, under given conditions.
Functional dependency among tables is exploited to catch
out indirect relations. On the other hand, several repre-
sentation/execution issues are raised here on the usage of
SCR for such a domain (e.g., modeling time).

Section 2 gives an overview of a FCS, in terms of hard-
ware/software components and input/output variables. In
Section 3 analytical relations are introduced that describe
how analytical redundancy provides fault tolerant capa-
bilities to a FCS; domain partition is also provided. In
Section 4 major issues related to the SCR modeling are
dealt, and the specification refinement process, as part of
validation, is also sketched. In Section 5 a wider perspec-
tive of the problem is given, as part of an ongoing project,
where current and future possible directions are outlined.
Conclusions are reported in Section 6.

2 A Fault Tolerant Flight Control
System

2.1 Structure of a Flight Control System

Figure 1 shows the basic architecture of a Fly-By-Wire
Flight Control System (FBW-FCS). In FBW technology
conventional mechanical controls are replaced by elec-
tronic devices coupled to a digital computer. The net re-
sult is a more efficient, easier to maneuver aircraft. Four
subsystems form the core of such FCS’s. The Measure-
ment Subsystem (MS) consists of the Sensors and the Con-
ditioning Electronics. It measures quantities that allow
observation of the state of the aircraft. Primary sensors
are those sensors whose correct operation is required to
maintain a safe flight condition. The Actuator Subsystem
(AS) consists of the Control Surfaces, the Power Con-
trol Units (PCU’s), and the Engines. It produces aerody-
namic and thrust forces and moments by means of which
the FCS controls the state of the aircraft. The Control
Panel Subsystem contains all control devices and displays
through which the pilot maneuvers the aircraft. The Flight
Control Software subsystem (FCSw) includes all software
components of the FCS. It interfaces to the hardware of
the FCS through A/D and D/A cards (not shown in the fig-
ure). Current measurements, pilot inputs, and commands
to the actuators are processed according to the Flight Con-
trol Law (FCL) to obtain the commands to the actuators
at the next time step. Dash blocks and arrows represent
the system providing Analytical Redundancy based Fault
Tolerant Capability (AR-FTC) to the FCS and will be de-
scribed in the next section.

2.2 Deploying Redundancy for Fault Toler-
ance

Any hardware or software fault within the FCS can com-
promise the safety of the aircraft. For this reason FBW-
FCS’s must meet strict Fault Tolerance (FT) requirements.
The standard solution adopted to achieve fault tolerance is
physical redundancy. A typical multichannel architecture
for the FCS consists of three intercommunicating FCS’s,
that are equivalent —yet able to work independently. A
voting mechanism checks for consistency and can, under
some conditions, identify faulty components. Brute force
physical redundancy is no panacea, however: product re-
dundancy (duplicating copies of the same product) does
not protect against design faults, and design redundancy
(independent designs) has two major drawbacks, which
are cost and complexity. Complexity, in turn, adversely
affects overall reliability, and defeats the whole purpose
of the fault tolerant scheme. This additional complexity
affects not only the development costs, but also the main-
tenance costs.

These factors have, in recent years, led to an increased
interest in alternative approaches for enhancing FCS’s re-
liability. In the past two decades a variety of techniques
based on Analytical Redundancy (AR) have been sug-
gested for fault detection purposes in a number of appli-
cations [12]. The AR approach is based on the idea that
the output of sensors measuring different but function-
ally related variables can be analyzed in order to detect
a fault and identify the faulty component. Furthermore,
preserved observability allows estimating the measure-
ment of an isolated (allegedly faulty) sensor, while pre-
served controllability allows controlling the system with
an isolated (allegedly faulty) actuator. Fault tolerance is
achieved by means of software routines that process sen-
sor outputs and actuator inputs to check for consistency
with respect to the analytical model of the system. If an
inconsistency is detected, the faulty component is isolated
and the flight control law is reconfigured accordingly. By
introducing AR it is possible to take off redundant sensors,
electronics, mechanical linkages, hydraulic lines, PCU’s,
etc., thus cutting costs and weight, and reducing overall
complexity of the FCS. Physical redundancy would be re-
quired only where either post-failure system observability
and controllability are not preserved or detection of the
fault by means of AR is not feasible in the first place.

Application of AR in FCS’s is not new. The very same
airplane used to conduct research on FBW technology
was also used as testbed for an AR based fault detec-
tion algorithm [14]. The algorithm showed adequate per-
formance during flight tests. However, poor robustness
to modeling errors and the amount of required modeling
hampered further development. Since then, a number of
results have been obtained in the area of robust fault de-

Airframe

Sensors

PCU's

FTFCS

Control
Surfaces

primary secondary

FCL Input
data

��
��

AR-FTC

Ouput
data

Pilot

yp

y
v

y

u
v

v
m

yr

y

r

motion cues

u

FCSw

C
X

��
Cockpit
control
panel m

Engines

Electronics

u

u

^

^

^

^

^

^

^
^

s
^

v

AS

MS

Figure 1: Fly by Wire Flight Control System.

tection [11]. Unknown-input observers, robust parity re-
lations, adaptive modeling, and H1 optimization are a
few examples. While recent research has enabled us to
gain new insights into modeling analytical redundancy,
it has fallen short of an integrated design methodology
involving feasibility analysis, requirements specification,
and certification of AR based fault tolerant control sys-
tems. Exploring strengths, weaknesses, related degree of
reduction of physical redundancy, and overall reliability
is a fundamental step in the engineering process of such
systems.

3 Analytical Redundancy for Fault
Tolerance

3.1 The Flight Control System and Its Envi-
ronment

The airplane we adopt in this study is an F16. A detailed
non-linear model of the dynamics of this airplane is pre-
sented in [13]. The analytical redundancy of a fault toler-
ant flight control system depends on an analytical model
of the system and its environment. The dynamics of many
systems can be described in terms of a set of relations
among its inputs, outputs, states, and state derivatives.
These relations represent constrains imposed by laws of
mechanics, electronics, and thermodynamics upon sys-
tem inputs, outputs, and their derivatives. Because of ne-
glected dynamics, disturbances, and measurement errors

the analytical model of a system is not necessarily a truth-
ful representation of the real system. Control system de-
signers are mindful of this discrepancy and adopt design
techniques that are robust with respect to such uncertain-
ties.

In describing how analytical redundancy provides fault
tolerance capabilities to a flight control system, we adopt
the following notation:

Rc(state; state derivative; input; output;

process uncertainty;measurement error) (1)

Rd(current state; new state; input; output;

process uncertainty;measurement error) (2)

Parameters involved in these relations are vectors. The
relations are deterministic with respect to the first four
parameters, and stochastic with respect to the last two.
Whenever a parameter is not involved in a relation, we
write the symbol ’-’ in its place. Relation (1) is used for
time continuous models, where all parameters are evalu-
ated at the same instant t. Relation (2) is used for time
discrete models, where all parameters are evaluated at the
discrete time tk, except the new state, which is evaluated
at tk+1. The difference (tk+1 � tk) is the sampling time
of the discrete system. For the sake simplicity we describe
only the most relevant parameters of the relations that we
introduce in the remainder of the paper. Accordingly, we
will often skip the description of state, state-derivative,
process-uncertainty, and measurement-error parameters
unless they play a prominent role in the analytical redun-

dancy framework.
The following relations represent the analytical models

of the hardware systems in Fig. 1:

P (x(t); _x(t); c(t); x(t); �(t);�) (3)

A (xa(t); _xa(t); u(t); c(t); �a(t); �a(t)) (4)

Mp (xp(t); _xp(t); x(t); yp(t); �p(t); �p(t)) (5)

Mr (xr(t); _xr(t); r(t); yr(t); �r(t); �r(t)) (6)

Relation (3) describes the dynamics of the aircraft, i.e.
the process to be controlled by the FCS. It involves force,
moment, kinematics, and navigation equations. The state
vector includes the flight variables used in the above equa-
tions. A typical state vector is:

x = [U; V;W;P;Q;R;�;�;	; pN; pE; h]
T (7)

where the elements are the three linear velocities, the three
angular velocities, the three attitude angles, and North,
East, and altitude position of the aircraft. Forces and mo-
ments applied to the airframe by the control surfaces and
the engines are included in the input vector c(t). The out-
put coincides with the aircraft state and represents the ac-
tual value of the flight variables in (7). Since it is a set of
actual values, there is no output uncertainty. The process
error vector � is related to the uncertainty of the relation
with respect to neglected dynamics and unknown inputs.

Relation (4) describes the dynamics of the actuator sub-
system. The input vector u(t) includes command signals
to the actuators, while the output vector includes thrust
and aerodynamic forces and moments. Relation (5) de-
scribes the dynamics between aircraft state x(t) and pro-
cess measurements yp(t). A typical set of sensors pro-
vides the following measurements:

yp =
h
Ps; Pt; �; �;Ax; Ay; Az; ~P; ~Q; ~R

iT
(8)

These are static pressure, total pressure, angle of attack,
sideslip angle, body accelerations, and body angular rates
respectively. To differentiate measured from actual body
rates we adopt the ’tilde’ notation. Relation (6) describes
the dynamics between the actual position of pilot controls
r(t) and their measurements yr(t). The two measurement
vectors will be referred to in the sequel as:

y(t) = [yp(t); yr(t)]
T (9)

The following relations represent the analytical models of
the software systems in Fig. 1:

I (�;�; y(tk); ŷ(tk);�; �I(tk)) (10)

L(xL(tk); xL(tk+1); [ŷ(tk); û(tk)] ; û(tk+1);

�; �L(tk)) (11)

O (�;�; û(tk); u(tk);�; �O(tk)) (12)

The FCSw closes the control loop between sensors and
actuators subsystems. To distinguish software variables
from related electrical signals we adopt the ’hat’ nota-
tion. Relation (10) represents the relationship between
measurement samples y(tk) and the corresponding soft-
ware variables ŷ(tk). Since this is an algebraic relation,
there is no need to introduce state variables. �(tk) takes
into account quantization error. Relation (11) describes
the dynamics of the the flight control law. Current value
of sensor measurements and actuator commands are pro-
cessed to produce the actuator commands at the next time
step x̂(tk+1). Relation (12) describes the relationship be-
tween software commands û(tk) and electrical commands
u(tk).

In order to complete the set of relationships needed to
illustrate the principles at the basis of AR-FTFCS’s we in-
troduce two relationships capturing the FT requirements:

Rh (x(t); _x(t); r(t); _r(t)) (13)

Rl (x(t); _x(t); r(t); _r(t)) (14)

Relation (13) describes the high priority responsiveness
requirements of the aircraft to pilot commands in terms
of the true state of the airplane, the input commands, and
their derivatives. Relation (14) describes the low priority
requirements. For an airplane to be safe it is mandatory
that the high priority requirements are preserved even in
case of fault.

3.2 The AR-FTFCS

After having introduced the analytical model of the FCS,
its environment, and its fault tolerant requirements it is
possible to illustrate how an AR-FTFCS works.

At the instant tk new measurements are available as
software data ŷ(tk). The elements of this vector are not
independent; they are correlated by means of relations (3),
(5), (4), (10), and (12). Furthermore, they are correlated to
û(tk) by virtue of the same relations. By analyzing sensor
measurement and actuator command histories it is possi-
ble to check whether the above relations are satisfied. If a
fault within the hardware loop produces an inconsistency
with respect to the analytical model the system is said to
hold AR properties allowing detection of the fault. Af-
ter detection of the fault it is necessary to identify which
component has failed. Each component of the FCS plays
a different role within relations (5) and (4). Hence, the
distortion affecting these relations at the occurrence of a
failure depends on the component failed and on the fault
mode. By processing sensor measurement and actuator
command histories it is possible to locate the source of
distortion. If a fault within the hardware loop produces
a distinct signature in terms of commands/measurements

correlation the system is said to hold AR properties allow-
ing identification of the fault. Once the faulty component
component is identified, the FCS needs to be accommo-
dated in order to preserve responsiveness requirements.
Accommodation can be carried out at the software level
because the flight control algorithm is not unique. Given
relations (3), (5), (4), (10), and (12) describing the dy-
namics of the aircraft, sensors, actuators, and interfaces
with the FCL, there can be a number of different control
algorithms satisfying responsiveness requirements. Some
of these algorithms do not use all of the sensors and/or ac-
tuators available. Hence, if a hardware component of the
FCS fails, responsiveness requirements can be maintained
by switching to a control algorithm that does not employ
that component. If such an algorithm exists the system is
said to hold AR allowing accommodation of the fault.

Figure 1 shows how a FCS is enhanced to an AR-
FTFCS. The dash blocks and arrows represent the sub-
system providing Fault Tolerant Capability (FTC) to the
FCS. The core of this subsystem is the AR-FTC software
module, while the dash section within the Control Panel
block represents the hardware interface to the pilot. Fol-
lowing the notation adopted in the previous section we
describe the FTC subsystem by means of the following
two relations:

ARSw(xar(tk); xar(tk+1); [ŷ(tk); û(tk); m̂(tk)] ;

[ŷv(tk); ûv(tk+1); v̂(tk); ŝ(tk)] ;�; �ar(tk)) (15)

ARHw(�;�; [v̂(tk);m(tk)] ; [m̂(tk); v(tk)];

�; �ar(tk)) (16)

Relation (15) describes the dynamics of the software mod-
ule. It processes current measurements ŷ(tk) and com-
mands û(tk) to validate ŷ(tk) against the analytical model
of the system. If no inconsistencies are detected the
FCL module takes over and produces the new command
û(tk+1). If an inconsistency is detected the AR-FTC
module further processes incoming data to identify the
faulty component. Then, it either produces a virtual set
of validated measurements ŷv(tk) for the FCL, or it by-
passes the FCL and produces a new set of validated com-
mands ûv(tk+1) according to a safe control law that does
not use the faulty component. The two options are typi-
cally adopted for sensor and actuator faults respectively.
If a component of the actuator subsystem fails then it is
often necessary to reconfigure the control law to take into
account the control deficiency. If a sensor fails its out-
put can be estimated and the estimation substituted into
the measurement vector ŷ(tk) to produce ŷv(tk). How-
ever, the solution can be adopted where the FCL is by-
passed and an alternative control law is used in its place.
The ŝ(tk) signal is used to synchronize execution of the
FCL and the AR-FTC modules. m̂(tk) and v̂(tk) are the
operational mode selected by the pilot and the diagnos-

Fault mode yi (Volts) ŷi (deg/sec)

Loss of signal [2:0; 2:5] [�22; 0]
Loss of power 0 �90
Loss of ground 12 90

Table 1: Fault modes

tic information respectively. Relation (16) represents the
relationship between pilot’s controls m(tk) and displays
v(tk) and related software variables m̂(tk) and v̂(tk).

3.3 Fault Hypotheses

In the previous section we have shown how a system fea-
turing AR properties can be made fault tolerant with re-
spect to sensor faults at the software level. However, soft-
ware along with its supporting hardware (computers, data
buses, etc.) and hardware systems other than sensors and
actuators can fail as well. AR cannot be adopted to pro-
vide fault tolerance with respect to failure of such com-
ponents; a different approach must be adopted for these
types of faults.

In this phase of the study we focus our attention on sen-
sor faults only. More specifically, we require fault toler-
ance with respect to failure of the roll, pitch, and yaw rate
gyros. The sensors used are a solid state rate gyro where
a vibrating element is used to measure rotational veloc-
ity by employing the Coriolis principle. The output range
of the sensor is �90deg/sec and its bandwidth is 18Hz.
The output of the sensor has been recorded while simu-
lating the failures. Three different fault modes have been
considered: loss of signal, loss of power, loss of ground
reference. The fault modes along with outputs of the sen-
sor and the values of the correspondent software variable
are listed in Table 1.

3.4 Fault Modeling

We have to point out that even though analytical redun-
dancy does enable us to achieve some level of fault toler-
ance, it does not guarantee arbitrary levels of precision in
detecting, identifying, and accommodating sensor faults.
An exhaustive feasibility analysis covering components
subject to failure, fault modes, and possible state evolu-
tion for actuator, aircraft, and sensor systems is required.
To explain how detectability and identifiability problems
arise we will refer once again to relations (3), (5), (4),
(10), and (12). These relations can be assembled to form
one single relation that captures the system AR at soft-
ware level in terms of sensor measurement and actuator
command histories:

Rg([û(tk); û(tk�1); : : : ; û(tk�m)] ;

[ŷ(tk); ŷ(tk�1); : : : ; ŷ(tk�n)] ;

[�̂(tk); �̂(tk�1); : : : ; �̂(tk�p)]) (17)

Here � represents a global uncertainty term collecting all
process uncertainty and measurement error terms in rela-
tions (3), (5), (4), (10), and (12). Variables n, m, and p

represent the depths of the input, output, and uncertainty
sequences respectively. If we consider the space whose
points have coordinates given by the elements involved
in relation (17), we can distinguish those regions of the
space where relation (17) is satisfied, from those where
it is not. Furthermore, we can characterize those regions
related to distortions of relation (17) caused by the given
fault modes.

Following Mili et al. [1, 7], we model a fault toler-
ant scheme by means of a partition of the relevant state
space into a hierarchy of classes that represent degrees of
correctness, degrees of maskability, and degrees of recov-
erability. For a program, the relevant state space is the set
defined in terms of all the values taken by all the state vari-
ables of the program; for a set of sensors, the relevant state
space is the set defined in terms of all the values taken by
all the sensor readings. The partition that we derive for our
purposes is given in figure 2. Process uncertainties (distur-
bances, simplifying hypotheses, modeling shortcuts, etc)
make the actual partition more complex than the original
model [1, 7]. In its current form, this partition is incom-
plete, and is being refined.

The inner ellipsis of figure 2 represents states for
which the deterministic relationship within relation (17)
holds. The outer ellipsis contains the points for which
the stochastic relation (17) holds. Points outside this re-
gion imply an inconsistency with the analytical model of
the system. The three triangles marked F1, F2, and F3
contain points related to three different fault modes. The
intersection between the region ’F1 [F2 [F3’ and the
outer ellipsis contains those points that are related to a
fault mode, but that preserve relation (17). Hence, this
region represents those states where a fault mode is not
detectable by means of AR. This region is marked Detec-
tion non Feasible in the figure. The region marked Identi-
fication non Feasible contains those points for which the
identification of a fault cannot be achieved either because
that fault mode has not been considered within the speci-
fications, or because failure effects do not allow us to dis-
tinguish between the fault modes.

To describe accommodation feasibility in analogous
terms we need to consider the space whose points repre-
sent the aircraft states. If after the failure of a component
the FCL can be reconfigured to satisfy the safety require-
ments then accommodation is feasible within the whole
space. If instead there are states that cannot be reached
without violating the safety requirements the space will
be partitioned in regions where accommodation is feasi-

ble and regions where it is not. As a limit case, accommo-
dation is not feasible in the whole space if there is no FCL
that would satisfy the safety requirements.

4 SCR Modeling

The derivation of this specification is part of a larger
project whose purpose is to validate and certify an adap-
tive fault tolerant capability (AR-FTC in figure 1) for a
flight control system, which is concurrently being imple-
mented using a radial base function neural network [8].
Our intent is that the specification will be used as an or-
acle in the testing task which aims to validate/ certify the
fault tolerant capability. Consequently, it is rather imper-
ative that the specification be written in a language that
is supported by automated tools; so that in the validation/
certification phase, the neural net and the executable spec-
ification can be executed independently to provide a basis
for checking the former against the latter. We have chosen
to use SCR as the specification vehicle, because it lends
itself to this type of application: tabular representations,
which form the semantic foundations of SCR, were used
in [3] to specify the requirements of the Navy’s A7-E air-
craft and in [10] to specify nuclear power plants; SCR
was used to specify an autopilot [2], to specify a variety
of high assurance applications [5, 6], and to specify some
functions of the space shuttle software [15].

4.1 Scope of the Specification

Figure 1 shows the structure of the overall aircraft sys-
tem, including the data flow between the aircraft, the flight
control system, the cockpit controls, and the environment.
The first issue we must address is to delimit the bound-
aries of our specification. We have pondered two possi-
ble options, which we denote by option 1 and option 2:
whereas option 1 focuses on the inputs and outputs of the
fault tolerant capability component (re: AR-FTC, in figure
1), option 2 (the aggregate of the flight control system,
with the aircraft) considers the impact of the outputs of
the AR-FTC on the aircraft state. The choice of an option
is driven by the following considerations.

� Generality/ Abstraction. For a given situation, de-
fined by a set of sensor readings, there are many se-
quences of actions that a flight control system can
follow to achieve/ maintain the maneuverability/ sta-
bility of the aircraft. At any instant, these actions
may be different, but their combined effect over time
is identical. Hence by virtue of abstraction (we do
not wish to deal with the detailed mechanics of how
the AR-FTC operates) and generality (writing speci-
fications that apply across a wide range of possible

IDENTIFICATION
NON FEASIBLE

F2F1 F3

Deterministic
Dynamics

Stochastic
Dynamics

DETECTION
NON FEASIBLE

Fault
modes

Figure 2: Partition of the Space of Sensor Readings

implementations), the second option is better than
the first.

� Observability/ Controllability. If we choose option
2, then we cannot judge the outputs of the AR-FTC
directly, but we have to observe their effect on the air-
craft. This gives us much lower observability of the
AR-FTC than option 1. Controllability is the same
for both options.

Ultimately, this decision amounts to choosing between
observability (option 1), i.e. the ability to observe and
monitor the exact values that are produced by the FTFCS
implementation, and abstraction (option 2), i.e. the ability
to give the implementer some latitude in how to maintain
maneuverability. We have ruled in favor of abstraction.

4.2 Representation Issues

By virtue of the choice discussed above, the input vari-
ables of the specification are the sensor readings of rel-
evant flight parameters (altitude, speed, acceleration, an-
gle of attack, rate gyros, aileron deflections, elevator de-
flections, rudder deflection) and the actuator input values;
the output variables are the actual values (i.e., the vali-
dated vectors) of the same parameters and a fault report.

Hence, for parameter Y , for example, we define variable
mY (named after SCR parlance: monitoredY) which rep-
resents the sensor reading for Y , and variable cY (con-
trolled Y) which represents the actual value of parameter
Y . Because of sensor failures, cY may differ from mY .
In addition, because of the latency of the FCS and (espe-
cially) of the aircraft (in reacting to adjusted actuator val-
ues), the value of cY at time t (cY (t)) is not functionally
related to the value of mY at the same time t (mY (t)),
but rather to previous values of mY . In addition to the
sensor readings of the flight parameters, the set of input
variables also includes the values of the cockpit controls.
The second and fourth columns of table given in figure 3
show the structure of the input and output spaces. We now
give a mapping of those spaces into the partition of sensor
readings in figure 2.

The innermost ellipsis of figure 2 represents the fault-
free case, whose relation takes the form

R = f(hmY;mU i; hcY; cU i)jp(mY;mU; cY; cU)g;

where predicate p characterizes the condition of determin-
istic fault freedom. The outermost ellipsis of figure 2 rep-
resents the case in which a measurement error in sensor
readings leads to uncertainty in the fault process; the rela-

Family Input State Output
of (monitored) (Term) (controlled)
Variables Variable Variable Variable
Flight
Parameter, Y mY tY cY

Actuator
Inputs, U mU tU cU

Pilot
Command,MR mMR

Fault
Report, V cV

Figure 3: Space Structure

tion for this ellipsis takes the form

R0 = f(hmY;mU i; hcY; cU i)jq(mY;mU; cY; cU; �; �)g;

where � represents the measurement error and � the pro-
cess uncertainty; predicate q characterizes the condition
of fault status in the stochastic dynamics.

Each triangle Fi of figure 2 represents a different fault
mode, whose relation take the form

RFi
= f(hmY;mU i)jfi(mY;mU)g;

where predicate fi characterize the condition of fault
mode i. Different shades and bold lines in figure 2 sep-
arate areas with different fault capabilities. In order for a
fault i to be detected, it must satisfy

RFi

\
R = ;;

also, to be identified, it must satisfy

RFi

\
RFj

= ; (8j 6= i):

With regard to accomodability, the specification must
reflect the property that the aircraft remains maneuver-
able despite the presence of sensor faults. In particular,
in every triangle Fi maneuverability is a binary function
in variables mMR(t) and cY (t) (linking pilot commands
to actual flight parameters). Because mMR(t) and cY (t)
are not instant variables but rather functions of time, it is
conceivable that the value of cY at some time t be a func-
tion of the value of mMR at a previous time t0 < t.

4.3 Modeling Issues

Time is inherent in the specification of the FTFCS. Execu-
tion of the FTFCS takes place in the context of a sequence
of sensor inputs which, except for faults, represents a
physically feasible flight path. The FTFCS is aware of
the passage of time through the advent of clock pulses;

at each clock pulse, the FTFCS takes a snapshot of the
sensor readings, processes them, computes actuator val-
ues, then awaits the next clock pulse. Note that the sensor
readings may well remain constant across two or more
clock pulses; the FTFCS processes them at each clock
pulse all the same. On the other hand, sensor readings
may take several distinct values between two successive
clock pulses; the FTFCS is only aware of their two values
at the successive clock pulses.

Whereas the real-time operation of the FTFCS is driven
by the clock pulses, the execution of the SCR specification
(for the purposes of validating the specification or verify-
ing implementations against it) is driven by the succes-
sive application of the functions defined by SCR’s tabular
expressions on the input variables and the state variables.
SCR specifications are executed in a kind of a batch mode,
where the real time between two successive function ap-
plications need not bear any relation to the actual time
between two successive clock pulses.

The concept of time arises naturally in flight dynamics
equations, which are differential equations of flight pa-
rameters and pilot commands. Let us consider some con-
trolled variable cX, and let us assume that this variable
satisfies the following differential equation:

d(cX)

dt
= F (t);

where t is the time variable, F is a function of t that po-
tentially involves monitored and controlled variables (in-
cluding cX), and dX

dt
is the derivative ofX with respect to

time. If we approximate the derivative by means of finite
differences, we find (cX(t)�cX(t��t))

�t
= F (t): If we let �t

be the interval between two successive clock pulses, and
let this be the unit of time (i.e., �t = 1), then cX(t) and
cX(t��t) measure the current value and the past value of
parameter cX. Solving this equation for cX(t), we find

cX(t) = cX(t � �t) + F (t): (18)

Each application of this transformation (from cX(t � �t)
to cX(t)) represents the effect of the advent of one clock
pulse. In order to distinguish between the current and past
values of variable cX, we use SCR’s concept of term vari-
able. To each flight parameter (X) we associate a term
variable, which we denote by prefixing the variable name
with t; the term variable is used to represent the value of
the variable at the preceding clock pulse. In order to rep-
resent the transformation described in equation (18), we
write SCR tables to perform the following transformations
in sequence.

tX := cX;
cX := tX + F;

We cannot merely define two tabular expressions that
compute variables cX and tX according to these formu-
las, for they produce a circular reference (and SCR does
not recognize the sequence command —the order of ex-
ecution in SCR is driven merely by functional dependen-
cies).

A tantalizing alternative is, of course, to use SCR’s
primed variable convention, whereby the primed version
of any given (non-primed) variable is the previous value of
that variable. This option does not work for our purposes,
because of the specific interpretation of previous value in
SCR. SCR is event-driven, where each change of value
of any variable is understood to be an event; by contrast,
our model is time-driven, where an event is the advent of
a clock pulse. If, between two successive clock pulses,
three monitored variables change values, SCR considers
that it has witnessed three events, and previous refers to
the most recent one; by contrast, our model considers that
only one event has occurred, and previous refers to the
state of the system at the previous clock pulse.

5 Assessment

In this section, we review our specification project (al-
though it is still in progress) and assess some of our deci-
sions, with partial hindsight.

5.1 SCR Adequacy

We briefly report on our experience with using SCR for
the purposes of our specific situation. We acknowledge
that we have very little prior experience with SCR, and
our comments must be qualified accordingly.

The general pattern of a table in SCR is to compute
a controlled variable in terms of monitored variables and
possibly term variables. Many requirements that we en-
counter are instead best formulated as a relation between
monitored variables (to limit the domain of a relation), or
a relation between controlled variables (to limit the range
of a relation). Also, even if the controlled variable is a de-
terministic function of the monitored variables, it may be
more natural to represent this function by a conjunction of
non-oriented, non-deterministic, relations.

We find it unsettling that in a specification that has a
large number of tables, the only composition operator be-
tween these tables is functional dependency, which is not
even explicit. We would find it more powerful to have a
wide vocabulary of composition operators which we can
use to compose tables together. There is undoubtedly a
sound basis for letting functional dependency be the sole
criterion that determines the order of evaluation of tabu-
lar expressions. But our experience with modeling time
would have been more successful if we had the ability to

impose an arbitrary sequencing between tables, to break
the cycle of circular dependencies. (Note: It is possible to
define a refinement-monotonic sequence like operator, us-
ing demonic semantics). Furthermore, because tables are
combined only with functional dependencies (rather with
refinement-monotonic composition operators) we find no
natural discipline for stepwise specification generation.
Such a discipline would enable us to compose a specifica-
tion in a stepwise manner, and to know that as we produce
more and more tables, the overall specification grows in-
creasingly more refined (until completeness). The struc-
ture afforded by such explicit composition operators can
be used to control the complexity of subsequent validation
and verification tasks.

Because SCR, and the tabular expressions on which it is
based [9, 4], support model-based specifications, it elicits
more detail from the specifier than a behavioral specifi-
cation. This excess detail makes the specification more
complex, and may lead to inconsistencies.

We find that the data type offerings of SCR are more
akin to those of a programming language than to those of
a specification language. In an application such as ours,
we needed a variety of data types, ranging from angles
(degrees) to durations (seconds) to engine speeds (rota-
tions per minute) to positions (meters) to speeds (meters/
second) to accelerations (meters/ second/ second) to an-
gular velocity (degree/ second), etc. We found ourselves
mapping all of them into reals, when a language supported
typing system that provided a wide range of data types and
a corresponding type checking function would have en-
hanced the readability and reliability of our specification.
We also found that it would have been helpful if SCR pro-
vided dimension-checking functions, whereby whenever
we write an equation, it checks the dimensions of both
sides to ensure that they are consistent. Whether this is an
extension of the type checking function, a separate func-
tion, or actually the same (only more elaborate) function,
we do not know.

Many of the issues that we raised here are interrelated
(e.g. a single design decision dictates a host of interrelated
issues), and many stem from legitimate design tradeoffs
(e.g. favoring efficient executability vs expressive power).
We assume that as we become more acquainted with the
spirit of SCR’s specification model, some of these issues
will may grow increasingly insignificant.

5.2 Non-determinacy

We faced a dilemma while trying to derive a specification
for the fault tolerant capability flight control system, deal-
ing with the determinacy of the specification. We had two
options:

Make the specification deterministic. This is more
natural, from the standpoint of SCR (which revolves
around the pattern of formulating controlled vari-
ables as a function of monitored variables), and
yields generally simpler specifications. The main
drawback of this solution, of course, is that it forces
us to second guess the designer of the neural net, be-
cause we have to derive a specification for the exact
function that the neural net is implementing. This,
in turn, has two drawbacks: first, it imposes much
coordination between the implementer team and the
specifier team, and is counterproductive from a V&V
viewpoint (V&V relies primarily on redundancy);
second, it imposes early constraints on the designer,
prohibiting him from altering design decisions that
affect the specifier team.

Make the specification non deterministic. The posi-
tion here is to let the specification focus on express-
ing the desired functional properties, without going
as far as to uniquely specify which output will satisfy
these desired properties. This solution is consistent
with traditional guidelines for good specification, but
causes some difficulty in SCR, because SCR does not
handle non-determinacy naturally. This is the most
striking limitation we have encountered using SCR.
In our example (and certainly in many other applica-
tions as well), we often encounter requirements that
are not deterministic; also, many complex require-
ments are best formulated as the aggregate of a set of
simpler, non-deterministic requirements.

We felt very justified in choosing the second option, but
have found that it raises an issue which may, with hind-
sight, cause us to reassess our choice: Under the first op-
tion (deterministic specification), the specification of the
system does not have to capture the criteria under which
differences of output between the specification and the
implementation can be considered tolerable; this decision
can be made during the verification and validation step,
by the V&V team, to take into consideration any special
circumstances that may arise at run-time. By contrast, un-
der the second option, the tolerance margins have to be
hardcoded into the specification, and cannot be adjusted
subsequently by the V&V team to account for special test-
ing/operational conditions. Hence both options force us
to make early decisions: The first option imposes on us to
agree with the implementer on specific design decisions;
the second option imposes on us to agree with the V&V
team on specific tolerance margins.

6 Prospects

6.1 A Testing Plan

Our plan calls for using the target specification as an or-
acle in the test plan of the neural network. Specifically,
the neural net feeds its inputs into a certified flight sim-
ulator, which plays the role of the aircraft components in
the graph of figure 1. This aggregate is placed side by
side with the SCR specification, whereby the SCR is used
as an oracle to test the neural net. Input data is submit-
ted to the system under test and the SCR oracle, to check
for correctness. This input data is the aggregate of sensor
readings and pilot controls, which are collected from pre-
viously collected flight simulation data. The purpose of
the testing plan is to make a ruling on the certifiability of
the neural net as an implementation of the fault tolerant
capability of the flight control system. The system struc-
ture that we have derived for this purpose is presented in
figure 4. The fault reports of the neural net and the SCR
specification are compared for logical equality, producing
the result shown in the lower right corner of the figure. On
the other hand, the actual state of the aircraft, produced by
the flight simulator, is matched against the pilot controls
(by virtue of a law that captures aircraft maneuverabil-
ity), to return a boolean indicator of whether the aircraft
maintains adequate maneuverability (despite the possible
presence of faults).

6.2 Interpreting Flight Dynamics Equa-
tions

In the process of deriving the SCR specification of the
FTFCS system, we are really conducting two activities,
namely modeling and representation:

� Modeling. This task deals with such matters as de-
ciding which parameters are of interest, how do we
represent the fault tolerant capability, how do we rep-
resent time, how do we approximate derivatives, how
do we enforce sequencing of tabular evaluations/ ex-
ecutions, how do we reflect the dynamic nature of
the system, how do we detect, identify and accom-
modate faults, etc.

� Representation. Generally speaking, this matter
deals with how do we map our model into SCR
terms, and how do we formulate our model in such
a way as to take the best advantage of built-in SCR
features.

Ideally, we would like to think of these two activities are
being strictly sequential; i.e. modeling must be completed
before representation can proceed. As attractive as it may

SCR specifications
of
Fault Tolerant
Capability

Neural
Network

Flight
Simulator

Accomodation
Requirement

actuators

command

validated actuators

validated sensors

fault report

validated sensors

fault report

U

Y

D’

Y

U

MR

sensors

pilot

D

=

^

^

Y’

X
aircraft
state

Figure 4: A Testing Plan for the Neural Net

be, this discipline has proven to be a challenge in prac-
tice, due to time pressures and to the impact of represen-
tation constraints on modeling decisions. This has led us
to consider the possibility of producing a syntax directed
translation of flight dynamics equations into SCR source
code. The main advantage of this solution is that we get to
encode all our modeling decisions in the syntax-directed
rules; this allows us to keep our modeling options open
until very late in the specification lifecycle; most impor-
tant of all, this solution ensures that our modeling deci-
sions are applied uniformly across all the equations of the
specification.

6.3 Analytical Reasoning on Neural Nets

Traditional certification algorithms observe the behavior
of a software product under test, and make probabilistic/
statistical inferences on the operational attributes of the
product (reliability, availability, etc). The crucial hypoth-
esis on which these probabilistic/ statistical arguments are
based is that the software product will reproduce under
field usage the behavior that it has exhibited under test.
This hypothesis does not hold for adaptive neural nets,
because they evolve their behavior (learn) as they prac-
tice their function. Of course, one may argue that they
evolve their behavior for the better; but better in the sense
of a neural net (convergence) is not necessarily better in
the sense of correctness verification (monotonicity with
respect to the refinement ordering). Concretely, a neu-

ral net may very well satisfy the SCR specification in the
testing phase, and fail to satisfy it in the field usage phase,
even though it converges. See figure 5.

In light of these observations, we envisage to comple-
ment the certification testing activity with an analytical
method. Such a method would rely on some semantic
analysis of the neural net, as well as some hypothesis re-
garding the data that it receives in the future.

7 Summary

In this paper we have discussed the formal specification,
in SCR, of an adaptive fault tolerant flight control sys-
tem. The specification is due to be used as an oracle in
the certification of a radial basis function neural net that
implements the adaptive scheme. The fault tolerant prop-
erties of the system, the adaptive nature of its implemen-
tation, and the specific application for which the specifi-
cation is intended (certification), contribute to make this
a unique experiment in system modeling and representa-
tion. In particular, the fact that the system implementa-
tion is adaptive (hence does not duplicate its behavior as
it evolves) rules out traditional testing techniques. Also,
the fact that the system’s behavior is dependent on input
history precludes the traditional static analysis techniques.
The specification generation is under way, and we expect
many of the modeling and representation decisions that
we have discuss in this paper to remain in flux.

SCR Range

NN Range, under test

NN Range, in field

�

�

Behaviour
under test

Behaviour
in field

Figure 5: Convergence does Not Ensure Consistency

Acknowledgments

The authors acknowledge the assistance of Dr Constance Heitmeyer and

Dr Ralph Jeffords, from the Naval Research Laboratory, with the use of

SCR. Also, we thank Prof. Steve Easterbrook, University of Toronto,

who contributed his knowledge and experience with SCR.

References

[1] H. Ammar, B. Cukic, C. Fuhrman, and Mili. A com-
parative analysis of hardware and software fault tol-
erance: Impact on software reliability engineering.
Annals of Software Engineering, 10, 2000.

[2] R. Bharadwaj and C. Heitmeyer. Applying the SCR
requirements method to a simple autopilot. In Pro-
ceedings, Fourth Langley Formal Methods Work-
shop, Hampton, VA, September 1997.

[3] K. L. Heninger, J. Kallander, D. L. Parnas, and J. E.
Shore. Software requirements for the A-7E air-
craft. Technical Report 3876, United States Naval
Research Laboratory, Washington D. C., 1978.

[4] R. Janicki, D. L. Parnas, and J. Zucker. Tabular rep-
resentations in relational documents. In Ch. Brink,
W. Kahl, and G. Schmidt, editors, Relational Meth-
ods in Computer Science, chapter 12, pages 184–
196. Springer Verlag, January 1997.

[5] J. Kirby Jr, M. Archer, and C. Heitmeyer. Applying
formal methods to a high security device: An expe-
rience report. In Proceedings, IEEE International

Symposium on High Assurance Systems Engineer-
ing, pages 81–88. IEEE Computer Society Press,
November 1999.

[6] J. Kirby Jr, M. Archer, and C. Heitmeyer. SCR: A
practical approach to building high assurance: Com-
sec system. In Proceedings, Annual Computer Secu-
rity Applications Conference. IEEE Computer Soci-
ety Press, December 1999.

[7] A. Mili. An Introduction to Program Fault Tol-
erance: A Structured Programming Approach.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

[8] F.E. Nasuti and M. Napolitano. Sensor failure de-
tection, identification and accomodation using radial
basis function networks. Technical report, West Vir-
ginia University, Mechanical and Aerospace Engi-
neering, Morgantown, WV, November 1999.

[9] D. L. Parnas. Tabular representation of relations.
Technical Report 260, Communications Research
Laboratory, Faculty of Engineering, McMaster Uni-
versity, Hamilton, Ontario, Canada, October 1992.

[10] D. L. Parnas, G. J. K. Asmis, and J. Madey. As-
sessment of safety-critical software in nuclear power
plants. Nuclear Safety, 32(2):189–198, April-June
1991.

[11] Ron J. Patton. Robust model-based fault diagno-
sis: The state of the art. In T. Ruokonen, editor,
IFAC Symposium on Fault Detection, Supervision
and Safety for Technical Processes: SAFEPROCESS
’94, volume 1, pages 1–24, Helsinki Univ. Technol,
Espoo, Finland, June 1994. IFAC, Springer Verlag.

[12] Ron J. Patton, Paul Frank, and Robert Clark. Fault
Diagnosis in Dynamic Systems: Theory and Appli-
cations. Prentice Hall, 1989.

[13] Brian L. Stevens and Frank L. Lewis. Aircraft Con-
trol and Simulation. John Wiley and Sons, New
York, N.Y., 1992.

[14] K.J. Szalai, R.R. Larson, and R.D. Glover. Flight
experience with flight control redundancy manage-
ment. In AGARD Lecture Series No.109. Fault
Tolerance Design and Redundancy Management
Techniques, AGARD Lecture Series, pages 8/1–27.
AGARD, Neuilly-sur-Seine, France, October 1980.

[15] V. Wiels and S. Easterbrook. Formal modeling of
space shuttle change request using SCR. Techni-
cal Report NASA-IVV-98-004, NASA IV& V Facil-
ity, Fairmont, WV 26554, http://www.ivv.nasa.gov/,
1998.

Towards formal methods for mathematical modeling

Ursula Martin

SRI International, Menlo Park CA

University of St Andrews, Scotland

um@dcs.st-and.ac.uk

Abstract

We survey mathematical modeling, the mathe-
matical and computational technologies upon which
it relies, and the potential sources of error. We as-
sess formal methods and computational logic in this
light, suggesting that certain well worn paths may
have little to o�er. We identify as opportunities
for the future: analyzing requirements, assumptions
and proof obligations for the assessment and con�r-
mation of models, extending such techniques to ar-
chitectures for heterogeneous distributed models with
legacy components, using computational logic to ex-
tend the capabilities of computer algebra systems,
and techniques for symbolic analysis.

1 Introduction

The purpose of this paper is to assess formal
methods and computational logic from the point
of view of mathematical modeling. It forms part
of a larger research program assessing formal meth-
ods and computational logic for mathematics and
its applications.

The techniques of mathematical modeling, that
is of regarding a physical phenomenon as a dynam-
ical system for the purposes of understanding and
prediction, arose in the physical sciences during the
twentieth century, were used widely in meteorolog-
ical and defense applications and later spread to
environmental, biological and geological modeling.
They were transformed by modern computation,
and by increasing reliance on modeling in many as-
pects of public policy, and have also become the key-
stone of US undergraduate math curriculum reform
[38]. This paper concentrates on the issues aris-
ing in bioscience and environmental science, rather
than on physical sciences, engineering or control
theory: in particular we are considering computa-

tional rather than physical models.

In the �rst part of the paper we survey math-
ematical modeling, the math and software that it
relies upon, and possible sources of error and user
concern. We go into some detail, on the grounds
that assessing how formal methods might be used
in practice requires a general understanding of what
the practice of modeling is. In the second part we
consider how formal methods and computational
logic might address these concerns, and identify
some possible new directions.

Section 2 is a methodological aside. Section
3 contains an account of mathematical modeling,
which we encapsulate as a \purposeful representa-
tion of reality". A modeler devises a \model world"
to investigate some \purpose" in the \real world".
A mathematical \model" of the model world is con-
structed using dynamical systems, and the mod-
eler reasons within it. Almost universally today the
reasoning is done with the aid of numeric or sym-
bolic computation, so an \implementation" of the
mathematical model is built in a computer system:
from the \implementation" conclusions are drawn
about the \model" or the \model world" and as-
sessed against the hypotheses of the \model world"
or against observations of the \real world". We may
view this as a pipeline: freality+purposesg ! model
world ! model ! implementation.

Thus modeling relies on two underlying tech-
nologies: the mathematical theories of di�erential
equations and dynamical systems, and the compu-
tational tools of numeric or symbolic computation.

In Section 4 we give a brief account of the �rst
of these, the mathematical theories. We describe
the kind of reasoning that is typically done, and
assess the correctness issues. We note in particular
that the mathematician developing the theories, the
toolsmith using them to devise algorithms and the
modeler using those algorithms may have somewhat
di�erent perspectives.

In Section 5 we consider the second technology,
and describe numeric and symbolic computation
and some of the correctness concerns that arise. Nu-
merical systems are widely used because they always
give an answer: it is suggested that general software
engineering issues rather than bugs in algorithms or

oating point arithmetic are the main cause of er-
ror. Symbolic computation systems are much less

exible, and further problems arise because of fun-
damental design issues which mean that continuous
math is sometimes handled incorrectly.

Sections 4 and 5 considered the underlying tech-
nologies: in Section 6 we return to the model-
ing process itself and assess correctness concerns.
While these can arise anywhere in the pipeline, it
is the assessment of a \model" or \model world",
against competitors and against purposes that at-
tracts most attention in the modeling community,
and in matters such as environmental prediction (for
example, querying assumptions about ground water
penetration) they can be subject to heated debate.
In large or legacy models even tracking built-in as-
sumptions can be hard.

Section 7 addresses how computational logic and
formal methods may address some of the correct-
ness concerns raised in the previous sections. The
correctness of the mathematical and computational
technologies can in principle be addressed using
techniques of computational logic: we indicate the
main notions for both. In particular we report
brie
y on our own work using heavy duty theo-
rem proving in PVS to provide convenient embed-
ded reasoning tools for computational mathemat-
ics systems. However we assert that in general the
modeling community are users rather than creators
of mathematics and software, and are not particu-
larly concerned to have formal developments of ei-
ther the underlying material or its applications in
modeling, or to replace them with new foundational
approaches: these are all regarded loosely speaking
as \solved problems". While in principle techniques
based on improved forms of symbolic computation,
or on computational logic, would allow richer rea-
soning about models, it is hard to see them match-
ing the
exibility of numerical systems or overcom-
ing the investment in existing techniques.

Correctness concerns about the modeling pipe-
line involve, in so far as they can be formalized,
tracking of requirements and assumptions, and here
we judge there to be much greater potential for for-
mal methods from the user's point of view. We re-
port brie
y on our own experience with light for-
mal methods for tracking requirements, assump-

tions and proof obligations in computational math-
ematics systems.

In the light of the above Section 8 sets out four
main opportunities for the future: analyzing re-
quirements, assumptions and proof obligations for
the assessment and con�rmation of models, extend-
ing such techniques to architectures for heteroge-
neous distributed models with legacy components,
using computational logic to extend the capabili-
ties of computer algebra systems and improved tech-
niques for symbolic analysis.

2 A methodological note

It would be easy enough to tell a rosy story within
the contemporary rhetoric of formal methods and
computational logic of their potential for mathe-
matical modeling, illustrated with anecdotes of un-
reliable predictions from unsound models or bugs
in numerical code. We might then, with some ef-
fort, treat a simple di�erential equation or verify a
numerical algorithm within our formalism of choice,
argue with the aid of a large bibliography about how
such methods are \growing in importance", \vital
for safety critical applications of mathematical mod-
eling", \essential for mathematicians in developing
trusted proofs" and so forth, and conclude with an
exhortation to the academic and commercial mod-
eling community to take up our ideas forthwith.

We have attempted a somewhat di�erent ap-
proach here, by identifying, albeit informally, the
practice and concerns of the modeling community
and how formal methods techniques might address
them.

The identi�cation of \practice" in a discipline in-
volves �nding out what people actually do, rather
than what they say they do, or what others think
they should do. Thus for example in [25] we showed
that practice in pure mathematics research does
not, as an outsider might suppose, consist in rig-
orous formal development but rather in the devel-
opment of \good enough" proofs: this explains why
computational logic engines are hardly used by pure
mathematicians.

For sociologists such as Latour [22] identifying
practice involves detailed observations over many
months in laboratories, and careful enquiry as to
whether there is any such thing as a universal
or context-independent notion of scienti�c method,
rather than \particular courses of action with ma-
terials to hand" [24].

For the purposes of this paper we gained an
overview from textbooks, university courses, meet-

ings, seminars, newsgroups, bug-reports and dis-
cussions with re
ective practitioners, who included
both developers and users of such software1. I am
not aware of any thorough study into correctness
concerns for modeling and what causes errors, al-
though Mackenzie has touched on such matters in
his sociological account of the development of nu-
clear weaponry [24]. Certainly the matter has not
received the attention given to safety-critical sys-
tems. This paper can only be regarded as a pilot
investigation: I conclude that, while certain indi-
vidual incidents have been noted and studied, in
general correctness is taken for granted, and where
it is discussed it is the correspondence of models to
reality, rather than the correctness of the underlying
mathematics or software, that causes concern.

3 What is a model?

What is a model? A mathematical representa-
tion of reality? What is reality? What is a math-
ematical representation of it? Is it \out there" or
\purely formal", or constructed in the minds of sci-
entists with all kinds of motives and purposes, in-
cluding the quest for truth (whatever that might
be)? Questions of this kind have occupied philoso-
phers of science for centuries. For this paper we
adopt a work-a-day de�nition based on the standard
student text of Mooney and Swift [28]: a mathemat-
ical model is a purposeful representation of reality
using the tools and substance of mathematics, in-
cluding computation.

A classic example is the predator-prey model
whose purpose is to understand the long-term be-
havior of populations of predators (for example
lynx) and prey (for example hares) which mani-
fest cyclical behavior: as lynx numbers x rise more
hares are eaten, so hare numbers y drop, so lynx
numbers drop, so more hares survive, so lynx have
more to eat, so lynx numbers increase, and so on.
This is modeled by two di�erential equations, where
�; �;
; Æ represent parameters which will vary for
di�erent populations.

(
dx
dt
dy
dt

) = (
� ��x

y �Æ)(

x
y
) (1)

We call this Model PP1. From these equations we
may prove that y�e��yx
e�Æy = K and hence de-
duce that in the model x and y do indeed manifest
cyclical behavior over time for certain values of the
parameters. Even without this analytic formula we

1See acknowledgements section for more details

can implement the equations numerically and hence
draw graphs of x; y and t to display the cyclical be-
havior.

A simple account of modeling considers \the real
world" (including hare and lynx), a \purpose" (un-
derstanding population change in hare and lynx),
the \model world" consisting of assumptions we
have made or chosen about the real world (for exam-
ple that lynx die when there are no hares to eat), the
mathematical \model" we have built of our model
world using dynamical systems,2 and the \imple-
mentation" of that model in a computer system.
From the \model" or its \implementation" we can
draw conclusions about the \model world" which we
can then assess against the hypotheses of the model
or against experimental or other understanding of
\the real world". We may view this as a pipeline:
freality+purposesg ! model world ! model ! im-
plementation.

The predator-prey model PP1 above is an ab-
straction, whose purpose is to investigate the ap-
parent cyclical nature of such populations. It tells
us that if the hypotheses in the model world about
the behavior of hare and lynx are satis�ed, and
if �; �;
; Æ take certain values, then certain conse-
quences ensue in the model, and hence by implica-
tion in the \model world". We may then use domain
knowledge to give an interpretation of our conclu-
sions for \the real world".

If we wanted to study a particular population of
hares and lynx this model would not be of much
use. We would need a di�erent \model world" and
a more complicated \model", which we denote by
PP2. We would take other phenomena into account,
for example what hares eat, and consider data, ei-
ther real or simulated, on weather patterns or grass
growth for our particular population. We would
probably no longer have an analytical solution, and
would have to rely on an \implementation" to ob-
tain numerical, graphical or visual estimates for long
term behavior. These estimates would still be con-
tingent upon our assumptions, and the nature and
quality of the data we used. PP2 might not man-
ifest cyclical behavior at all: it might not include
the equations of PP1. The mathematical relation-
ship between our two models might be complex: it
would be unlikely that, in formal method terms,
one was a simple re�nement of the other for in-
stance. The distinction between these two kinds of
model, roughly speaking the �rst more concerned
with abstract principles or putative laws of nature,

2For the purposes of this paper we ignore stochastic and
discrete aspects

the second with simulations and predictions of phe-
nomena, has sometimes been drawn by calling the
former \models" and the latter \simulations". How-
ever there is no hard and fast distinction.

Both PP1 and PP2 are, in modeling terms, fairly
small and straightforward, in contrast to global
models of climate or population, re�ned over many
years with complex data sets.

Once we have a model, or several models, we may
investigate their solution and other properties, ei-
ther mathematically or through an implementation.
Models are assessed and evaluated against their pur-
poses, or against other models that address the same
or related purposes. Of particular concern is the
de�nition and assessment of correctness.

4 Mathematical techniques

The theory

In this section we give a summary of some of the the-
ory of di�erential equations and dynamical systems
from the point of view of mathematical modeling
applications.

What do we mean by a di�erential equation, and
a solution? At an elementary level in a modeling
text such as Mooney and Swift [28] the notion is
often given only by example: for instance suppose
we wish to model the motion of a particle in terms
of the time and distance from an initial point (y)
and the acceleration (y00 = d2y=dt2). The equation

y00(t) + y(t) = 0 (2)

describes the motion at time t; any solution has the
form �(t) = Asin(t) + Bcos(t) where A and B are
arbitrary constants, and a solution satisfying the
initial conditions y(0) = 1; y0(0) = 2 is given by
�(t) = 2sin(t) + cos(t): A solution satisfying the
initial conditions can be evaluated at any value of t,
so that for our solution � at time t = �=2 the posi-
tion will be given by �(�=2) = 2. This equation has
an explicit mathematical solution (we call this an
analytic solution), but for many equations we may
know only of the existence of such solutions, and
numerical solutions at particular points (subject to
the accuracy constraints of numerical analysis) may
be all that are available to us.

\Solving" an equation involving an unknown
function y and its derivatives, and conditions on the
value of y at certain points, involves �nding a partic-
ular (some possible such y) or a general (all possible
such y) analytic solution in terms of known func-
tions. In texts at the level of [28] various standard

\cook-book" techniques are given, accompanied by
reassurance and motivation for the reader. There is
also particular stress on determining the qualitative
or limiting behavior of the solution: does it decay
over time for example.

Thus for example [28] contains the following
recipe for solving �rst order linear di�erential equa-
tions of the form

dy

dx
+ a(x)y = b(x) : (3)

the general solution is (sic, including sloppy variable
naming)

y(x) =
1

�(x)
(

Z
�(x)b(x)dx + C) (4)

where �(x) = exp(
R
a(x)dx): This description elides

many issues concerned with exactly when functions
are de�ned or di�erentiable, or solutions exist. The
standard approach of an undergraduate course in
di�erential equations makes matters more precise:
Suppose that a and b are continuous functions on an
interval I: Let A(x) be a function such that dA=dx =
a(x). If C is any constant then the function � given
by

�(x) = exp(�A(x))(
xZ

x0

exp(A(t))b(t)dt + C) (5)

where x0 is in I; is a solution of (3), and every
solution has this form.

The standard treatment continues by considering
existence proofs for solutions. A particularly impor-
tant class is that of linear systems, of the form

L(y) = y(n)+a1(x)y
(n�1)+: : :+an(x)y = b(y); (6)

where under suitable conditions solutions always ex-
ist, though they may not have a simple closed form
representation.

In the case when all the ai are constant the so-
lutions to L(y) = 0 are found by computing the
eigenvalues, or roots of the characteristic equation

�n + a1�
n�1 + : : :+ an = 0: (7)

Thus for example when n = 2 the equation

L(y) = y00 + 2by0 + cy = 0 (8)

has general solution given by

�(x) =
exp(�bx)(A +Bx);
 = 0

exp(�bx)(A exp(
p

x) +B exp(�p
x));
 > 0

exp(�bx)(Acos(xp�
) +Bsin(x
p�
));
 < 0

(9)

where
 = b2 � c: This description of the solution
may be further re�ned to include its qualitative be-
havior: for example in case
 = 0, the system oscil-
lates, and if b > 0 it tends to zero (is damped), if
b < 0, it tends to in�nity and if b = 0 it is stable.

Current mathematical research emphasizes dy-
namical systems, that is, roughly speaking, solution
spaces of systems of di�erential equations like PP1.
Linear systems in n variables can be expressed as a
vector equation X0 = AX; where A is an n�n ma-
trix, and the solutions are given in terms of eigen-
values of A. This again allows us to predict the
limiting behavior of such a system, and to identify
�xed points (equilibrium points) where X0 = 0; and
behavior near to them: for example does a point
near the equilibrium point move towards it (a sink)
or away from it (a source). In two dimensions an
analysis like (9), called a phase plane analysis, is
possible: in dimensions above two chaotic phenom-
ena can occur.

For non-linear systems like the predator-prey
model there are extensive theories of existence and
uniqueness of solutions. An important practical
technique for investigating qualitative behavior near
a �xed point is that of taking a linear approxima-
tion there and using this to do a phase plane analy-
sis. The full mathematical analysis of such behavior,
and of the underlying dynamical systems, possible
chaotic behavior and so forth, requires the full ap-
paratus of modern di�erential geometry.

Applications

In the initial stages the modeler may want to ma-
nipulate and transform the model and get a few
rough assessments of its behavior. The next stage
would be a more detailed investigation, to compare
it with alternatives, to calibrate it against data,
theory or other models, and to assess its perfor-
mance. At a more mature stage models may be used
for prediction or for reference points against other
models, as components in larger systems, or re�ned
as new data or theoretical understanding becomes
available.

For example Hammersley's [12] maxims for ma-
nipulators at an early stage include: \clean up the
notation, choose suitable units, reduce the number
of variables, and avoid rigor like the plague as it
only leads to rigour mortis", to which one would
probably add today \visualize the solution".

A typical more detailed investigation might in-
clude:

� solving a system of di�erential equations sub-

ject to initial values or boundary conditions: ei-
ther analytically or numerically

� reachability analysis: determining if there is an
analytic or numeric solution satisfying a set of
constraints, typically that it starts in one region
and passes through another. Thus in example
(2) the point (�=2; 2) is reachable from (0; 1),
but (r; 3) is unreachable for any value of r

� identi�cation of behavior near a stationary
point: for example by a phase plane analysis

� limiting behavior over time: for example by an
eigenvalue analysis generalizing (9)

� perturbation analysis: to identify behaviors of
the model under local variations

� behavior as some parameter varies: for example
changes in the phase plane as a coeÆcient varies

Taking a formal methods perspective one might
expect to see more general reasoning about prop-
erties of the solution, for example using temporal
logic. Recent work in the hybrid systems commu-
nity addresses this for control systems using tools
such as HyTech [17], and Dutertre [7] gives exam-
ples of reasoning about upper bounds in the require-
ments of an avionics application, but such work does
not seem to be considered at all mainstream in the
modeling community. For example searches in Cite-
seer [3] turn up little of relevance.

Correctness issues

In analyzing correctness issues for modeling we �rst
turn to the correctness of the underlying mathemat-
ics.

We note �rst that applications of modeling are
not in practice a particularly rich source of novel
mathematics. There is in general [28] little en-
thusiasm for spending a long time developing new
equations for a particular modeling problem. Stan-
dard techniques, like linearisation or power-series
approximation, for replacing one equation with an-
other that behaves in roughly the same way, may
be suÆcient when experimenting with a number of
models at an early stage. The community tends to
work with a smaller number of systems which are
reasonably well understood or mathematically well-
behaved and which experience or consensus deems
suÆcient for the domain at hand.

The researcher in dynamical systems, the applied
mathematician or numerical analyst `toolsmith' and

the modeler applying those techniques are doing dif-
ferent things. The researcher is concerned with gen-
eral theories about the existence of solutions or the
behavior of families of systems. The toolsmith is
developing e�ective techniques for solving problems
like those above, with the researcher's work to as-
sure correctness. Modelers usually want to take the
underlying mathematics for granted, concentrating
instead on the modeling issues that arise: their
mathematical interest or understanding is perhaps
unlikely to go beyond a work-a-day account at the
level of [28]. In particular the researcher is doing
proofs in the underlying theories, the toolsmith is
doing proofs about hand or machine computation
techniques, and the modeler is applying those com-
putation techniques.

We have discussed at length elsewhere [25] atti-
tudes to correctness in the mathematical commu-
nity: we identi�ed current mathematical practice
with producing conjectural mathematical knowl-
edge by means of speculation, heuristic arguments,
examples and experiments, which may then be con-
�rmed as theorems by producing proofs in accor-
dance with a community standard of rigour, which
may be read by the community in a variety of ways.
Most of the mathematics used in applications of
modeling is not particularly novel, and has been
subject to the usual mechanisms of community in-
spection through courses and text books over many
years: there does not seem to be much concern from
the mathematician, the toolsmith or the modeler
over its correctness. As is usual in contemporary
mathematical culture few are much concerned with
formal proof or matters of foundation.

When a new technique arises, for example the
recent growth of interest in level set methods [35],
the focus of the discussion is generally on new ap-
plications, or on faster or better (for example with
less instability near cusps) performance in old ones,
rather than on extended discussions of correctness.

5 Computational techniques

Numerical methods

The standard, and almost universal, approach to
computation for modeling, is numerical methods,
which have been part of applied mathematics and
the physical sciences for almost �fty years. They
are widely available through standard commercial
libraries such as NAG [29] and MatLab [27], and
provide the basis for large software systems, usually
written in FORTRAN or C and used in chemical,

physical or astronomical research as well as in prac-
tical �elds like engineering, meteorology and aero-
nautics and increasingly today in visualization and
animation. Purpose-built implementations, for ex-
ample, for biosciences, environmental modeling or
geology are built on top of general purpose tools
such as Simulink [36] which provides a graphical in-
terface to MatLab. For example Simulink may eas-
ily be used to run the predator-prey model for dif-
ferent values of the parameters, generating numeric
or graphical output, from which various properties
of the system may be inferred.

In addition such systems can readily accommo-
date other inputs, for example from sensors or mea-
suring devices, or other numerical procedures, such
as curve �tting. For many problems, for example
the investigation of chaotic phenomena, there are
no alternative standard techniques.

From the modelers point of view the main ad-
vantage of numerical systems is that they will al-
ways give an answer, and despite the negative ev-
idence we cite below, with suÆcient user expertise
are accepted as doing so suÆciently quickly and ac-
curately, with established protocols for testing and
error analysis. Numerical methods and software like
NAG or Simulink are so standard and so widely
used that it is hard to see them being displaced by
other techniques. However the output, and proper-
ties derived from it, will always be numeric and not
analytic, and support for investigating properties of
the solution or parameters may be limited.

Numerical methods: correctness issues

The user of such systems can use default settings
and work in ignorance of the underlying numerics,
or take more detailed control using standard tech-
niques of numerical analysis [18] to ensure results
of required accuracy. Indeed, faster and more ac-
curate numerical methods have been the main re-
search thrust in numerical analysis over the past
forty years.

A particular issue in numerical work is correct-
ness of
oating point implementation (for example
the famous Pentium bug): the consistent handling
of
oating point arithmetic or the translation be-
tween machines with di�erent word-lengths are re-
curring legacy issues. Another is convergence crite-
ria: is the implementation robust enough to produce
the same answer again for the same inputs. Kahan
[21] maintains a web-site of known problems.

Yet problems persist and even expert users may
be unaware of them. The author was told of a

complex bug in the British Met oÆce implemen-
tation of the multi-grid �nite element method that
was worth about 2% accuracy in weather forecasts.
Hatton [15] reports on observations of nine indepen-
dently developed large programs for seismic data
processing, and shows that although the programs
used the same data and were developed to the same
speci�cations in the same language (FORTRAN),
numerical disagreement grows at a rate of 1% in
average absolute di�erence per 4000 lines of imple-
mented code. The programs were used to analyze
large scienti�c datasets where typically results ex-
pect around 0.001% accuracy. He concluded that
in general problems were caused not by compiler or
hardware errors, but by software faults, often o�-
by-one errors. However the matter has not received
much recognition in the modeling community [16].

Symbolic computation

Symbolic computation techniques, such as those
embodied in Maple or Mathematica, appear to o�er
a wide range of additional facilities to the modeler,
especially when combined with numerical methods.
Thus the dsolve command in Maple, or the DSolve
command in Mathematica, can solve a wide variety
of di�erential equations analytically, and the user
can further interact with the system or write their
own code, to investigate their properties. As the ac-
count of the mathematics above demonstrates, im-
plementations rely on other symbolic computation
techniques, such as integration, polynomial solving
and computing eigenvalues and eigenvectors.

There is continuing lively debate over the respec-
tive merits of symbolic and numeric computation,
and active research on the best way to combine
the two approaches. The main drawback from the
user's point of view is that computer algebra sys-
tems are simply unable to solve many of the prob-
lems listed above, either because of unsolvability or
intractability. Even if there are symbolic solution
techniques such systems do not scale, and there are
not in general well-developed techniques for combin-
ing numeric input or techniques with symbolic ones:
hence they lack the
exibility of numerical systems.

Thus for example while symbolic techniques for
reachability analysis using quanti�er elimination
have been investigated [20], they are in general dou-
ble exponential, and intractable in all but the small-
est examples.

There are a few cases where symbolic techniques
are better developed than numeric ones, for example
the use of model checking in systems like Hytech to

reason about hybrid systems, discrete combinations
of control systems. There are also a few applications
where symbolic systems are used in preference to
numerical systems, for example in robotic or satel-
lite motion planning.

Symbolic computation: correctness issues

By contrast with numerical techniques, users often
�nd symbolic computation or computer algebra sys-
tems (CAS) like Maple frustrating and hard to use:
see Wester [37] for a survey. Even in situations
where the user is expecting them to work they may
fail to produce an \obvious" answer, or produce un-
expected or wrong answers, and their performance
can be very unpredictable, varying widely on appar-
ently similar inputs.

One cause of error is failure to check side-
conditions: this is not so much an error as a de-
sign decision for ease of use, since even small proce-
dures may produce large numbers of side conditions,
often intractable or undecidable. This illustrates
a more general design issue: there are many ex-
amples of processes (for example de�nite symbolic
integration via the Fundamental Theorem of Cal-
culus) where a CAS may be able to compute an
answer, sometimes correct, on a large class of in-
puts, be provably sound on only a subclass of those
inputs (where the function is continuous) and be
able to check soundness easily on a smaller subclass
still (for example, since continuity is undecidable,
systems use a simpler check for functions with no
potential poles or discontinuities). Some CAS are
cautious, only giving an answer when pre-conditions
are satis�ed: however this means they may fail on
quite simple queries. Others try and propagate the
side conditions to inform the user, though this can
rapidly lead to voluminous output. Mathematica
and Maple generally attempt to return an answer
whenever they can and leave to the user the burden
of checking correctness. In [1] we have analyzed this
in some detail for symbolic integration, and pro-
posed a solution based on veri�ed look-up tables.
We extended our ideas to dynamical systems and
mathematical modeling in [26], with a suite of PVS
tools to check de�nedness and continuity, callable
from Maple.

However there is a deeper reason for appar-
ent unsoundness than failure to check for side-
conditions. Formally CAS compute inde�nite in-
tegrals and solve di�erential equations within the
algebraic framework of the theory of di�erential
�elds [2]: �elds with an operator satisfying d(f:g) =

(df):g+f:(dg): When using an inde�nite integral as
part of an analytic calculation, for example solving
a di�erential equation, the answers obtained alge-
braically may di�er signi�cantly from what is ex-
pected. For example, viewed as an element of a dif-
ferential �eld, the derivative of f(x) = tan�1(x) +
tan�1(1=x) is zero, and it follows that f(x) is a
constant. Viewed analytically it is a step function
with the value ��=2 for x < 0 and �=2 for x > 0.
Thus an \unexpected" answer to a query involving
f(x) may be correct within the theory of di�erential
�elds, but incorrect in the usual analytic framework
for di�erential equations we have presented above.
Similarly it is easy to get Maple's dsolve command
to display behavior which is unsound analytically,
as it applies (4) without checking continuity of a
and b.

This analysis should be kept in perspective how-
ever: developers of the symbolic software systems
GAP [34], axi.om[19] and Aldor [19] indicate that
the majority of bug reports tend to uncover user
misunderstanding, performance, or systems
aws,
especially to do with portability, rather than prob-
lems with the underlying mathematics or algo-
rithms. For example of approximately 1100 bug re-
ports on Aldor only one reported a problem with an
incorrect library implementation, involving a failure
to detect a division by zero.

6 Correctness concerns for modeling

We now return to correctness concerns for
the modeling process, and consider the pipeline,
freality+ purposesg ! model world ! model ! im-
plementation.

One may �rst ask whether the \implementa-
tion" is a correct implementation of the underlying
\model". In particular we may ask which aspects
of its behavior are artifacts of the \implementa-
tion" (for example a poor choice of random number
generator) rather than consequences of the model,
or what hidden or explicit assumptions about the
model have been made and how they a�ect the uses
to which the system has been put. For example, if
the system is used in a new application and predicts
that x > 3, is this a consequence of the model, or
of some implementation decision being called upon
outside its domain of validity.

Heterogeneous distributed implementations of-
ten incorporate large legacy systems where the un-
derlying assumptions may have varied over time,
where later implementors may not have fully un-
derstood the original assumptions, or have incorpo-

rated variations based on new results, or where the
underlying models may be incompatible. Thus for
example an implementor may have hard-wired an
implicit assumption about, say, the life span of a
predator which is totally inaccessible to later users,
and may lead to nonsensical results when combined
with a di�erent implementation.

The correctness of an implementation concerns
how the \implementation" of a model matches the
\model": of much greater concern in the model-
ing community is the assessment of the \model"
against its \purposes", or against other models with
the same or related purposes. In such discussions
the \model" and its \implementation" may often
be identi�ed, particularly if we only have numerical
information about the model. An excellent account
from the point of view of environmental predictions
is given in Oreskes [31].

The correctness of a \model" is in any case con-
tingent: it says that under the hypotheses of the
\model world" certain consequences occur, and the
output of the implementation may be regarded as
a prediction, with estimates of error being provided
by mathematical analysis in the light of the model
and the reliability of the data. The hypotheses of
the model world may not necessarily be very clear
or explicit, being part of the assumed background
knowledge of domain experts. Care needs to be
taken with data: for example a famous data-set on
Canadian hare and lynx populations was discredited
[11] when it was pointed out that the lynx and hares
lived far apart and had little opportunity to eat each
other. Our ability to test the correspondence of
the \model world" with the \real world" depends in
part on our understanding of the phenomena, and in
part on the availability of suÆciently accurate data.
So questions of correctness of a particular model are
complicated and often subject to heated debate or
compromise.

In some cases predictions may be easy to check:
the occurrence of the full moon for example is read-
ily observed and not subject to major disagreement.
So if a model with a trustworthy implementation
whose purpose is to predict the full moon fails to do
so we may reasonably assume the \model", or the
\model world" is incorrect. Even then it may not be
at all clear which assumption or equation has led to
the error. However most models cannot be checked
in so straightforward a way: for example the aver-
age temperature of the earth needed in models of
global warming is hard to measure or estimate, and
in other cases it may be infeasible to check the pre-
dictions: for example safety thresholds for aircraft

loads or discharge of pollutants.
Models may be known by insiders to be in-

accurate, but none-the-less used as a best guess,
or treated as accurate even though they are not.
Mackenzie [24] reports on the debate surrounding
the abandonment of nuclear weapons testing, draw-
ing attention to the importance of tacit knowledge
in the practical development of nuclear weapons,
and the possibility that they might be \uninvented"
if this tacit knowledge is lost. He reports scientists'
claims that a computer prediction is \pretty good"
if the actual yield is within 25% of prediction, and
notes that during the moratorium on nuclear testing
in the 1950s dependence on and con�dence in com-
puter programs increased: according to an intervie-
wee \people start to believe the codes are actually
true, to lose touch with reality.".

Experts may disagree as to the acceptability of
the model: Shrader-Frechette [39] reports disagree-
ment among two expert committees in the 1993 as-
sessment of the proposed Yucca Mountain Waste
repository site as to whether the large and well-
established geological models used could reliably
predict volcanic activity. We may have several com-
peting models: for example Gilpin and Alaya [9]
used experiments on competing populations of fruit-

ies to test di�erent variants of the predator-prey
\model" and \model world" against the purpose of
accurate prediction of fruit-
y populations. They
compared their models against the accuracy of their
results, favoring those where the model world made
most sense biologically, and those where the model
was simple and general3. However it may not be
the case that we can always chose among compet-
ing models so readily.

Matters become more complex when we con-
sider many-layered models, where for example test-
ing against \the real world" may mean in practice
testing against another \implementation" of a dif-
ferent \model" that has acquired the standing of
\the real world" for practical purposes. In assessing
model PP2 for example we would need numbers of
hares and lynx: would we do every count by hand
or use \implementations" of established \models"
of wild-life numbers calibrated with key data from
�eld studies. And how might the assumptions of
the latter a�ect the predictions of PP2?

As we have indicated a particular concern is the
combining of di�erent models or implementations.

3A much argued philosophical point. It has been sug-
gested [31] that the quest for simplicity and generality, identi-
�ed with Ockham's Razor, owes more to seventeenth century
theology and mathematical convenience than any evidence
that simple models are better predictors than complex ones.

Di�erent models may address di�erent parts of our
purposes di�erently, or in choosing to model part of
a larger scheme we may have to choose between sev-
eral models none of which are entirely satisfactory.
Assumptions may be incompatible or unclear: this
is a particular issue for legacy components where as-
sumptions may be concealed, contradictory, or have
changed over time.

7 How can formal methods con-

tribute?

Putting together the ingredients described above
we may identify the business of modeling with
�rst developing generic mathematical theories, al-
gorithms, and implementations, both numeric and
symbolic, and then modeling particular systems by
implementing them within the chosen framework as
part of the modeling pipeline. Correctness concerns
may be raised at all levels of the process: the math-
ematics, the software systems, the implementations
of the model and the correspondence of the model
with reality. As far as we can tell this last is of most
concern to the modeling community.

Formal methods, broadly construed, o�ers a va-
riety of approaches.

Mathematical theories

Since the pioneering work of de Bruijn's AU-
TOMATH [4], developed in 1967, the theories of
analysis which underlie di�erential equations and
mathematical modeling have been developed inside
various theorem provers: for recent manifestations
see Dutertre's implementation of the reals inside
PVS [7] or Harrison's development as far as inte-
gration in HOL [14]. As far as we are aware a full
machine veri�cation of the mathematics outlined in
the previous sections has not yet been done, but it
is perfectly feasible in a number of systems, using
classical or constructive techniques. However while
this is possible, it is hard to see how it would serve
the needs of the modeling community, who regard
the soundness of the underlying math as a \solved
problem", established over many years in text-books
and courses. They rely on mathematicians, and
the usual community mechanisms of mathematics,
which are remarkably averse to rigour [25], to es-
tablish correctness of the necessary mathematics: I
have identi�ed little interest in human or machine
formal proof for the classical mathematics under-
lying the subject, the work of the toolsmith, or its
routine application in modeling. This is not to write

o� machine checked mathematics as an endeavor,
merely to say that this community sees little point
to it. While logicians [8] have considered alterna-
tive axiomatizations for di�erential analysis I have
identi�ed no interest among the mainstream math-
ematical or modeling community in these matters.

Once such a development had been done it would,
in principle, be possible to investigate our mod-
els directly within the prover, recasting the various
queries outlined in Section 4 as proof requirements,
for example the reachability results of example (2).
However it is hard to see how such systems would
overcome the diÆculties we have already discussed
for symbolic computation systems: infeasibility or
intractibility mean that often there will not be an
automatic proof procedure, and users will need to
produce a manual proof of something whose numer-
ical equivalent could be produced automatically. In
addition any such system would need a computa-
tional component if it was to match the exploratory
capacity of existing techniques, and as Section 4
shows many of the computations or proofs would re-
quire advanced symbolic computation facilities, for
example to calculate eigenvalues.

Against this however we should set the advan-
tages of abstraction, higher level proof and the han-
dling of parameters: for example it takes laborious
numerical simulation to investigate changes in the
phase plane as a coeÆcient varies, whereas a sym-
bolic approach merely produces a proof obligation
to be discharged.

In addition, as we have argued elsewhere [25] spe-
cialized decision procedures may prove useful for
some queries, for example quanti�er elimination for
reachability [20].

Computational techniques

As we have seen general software engineering issues
have been identi�ed as a major source of problems in
both numerical and symbolic software: since these
problems and formal methods approaches to them
are not peculiar to modeling we do not discuss them
further here. The modeling community relies on the
usual mechanisms of software development, which
are averse to rigour, to establish trustworthiness of
its computer systems: I have identi�ed little inter-
est among commercial vendors in classical formal
methods techniques.

It is in principle possible to implement numerical
or symbolic computation inside a theorem prover,
gaining reliability at a cost in performance, and
both approaches have received much attention in

recent years. The notorious \Pentium bug" drew
attention to the unreliability of
oating point imple-
mentations, and inspired Harrison's development of

oating point arithmetic in HOL [13] which has had
considerable commercial impact in the veri�cation
of hardware.

Such implementations of computer algebra sys-
tems have proved harder, partly because, as we
have indicated, they require implementation inside
a prover of specialized algorithms such as factoriza-
tion. In any case, some of the unexpected behaviors
of computer algebra systems arise from the alge-
braic representation of analysis: these would not be
solved by re-implementation inside a prover. We re-
port elsewhere [26] on an alternative approach: we
built a toolkit in the PVS [32] theorem prover which
automatically checks pre and side conditions such
as continuity to computer algebra algorithms such
as Maple's dsolve, thus addressing some of the dif-
�culties caused by unsoundness in using computer
algebra systems for analytic work at little extra cost
to the user.

Modeling

As we have indicated the main concerns of the mod-
eling community are with the correctness, validation
and con�rmation of models.

We report elsewhere [5, 6] on our lightweight
formal methods approach: we built a veri�cation
condition generator in Aldor, an internal language
used in developing the computer algebra systems
axi.om and Maple, and are currently developing this
work in collaboration with NAG Ltd. The veri�ca-
tion conditions are generated at compile time from
user annotations, typically recording pre- and post-
conditions, and can be passed to a theorem prover
or used for information or documentation.

Our original motivation was particularly that of
assisting the user of libraries where the code it-
self might be trusted, but the assumptions or pre-
conditions for its correct use were ill-documented.
We are currently experimenting with the use of
these annotations for documenting requirements
and assumptions in legacy models.

However there appear to be some di�erences be-
tween the needs here and those of design or require-
ments engineering: in particular there are cases
where it seems useful to record assumptions or do-
main knowledge that does not a�ect the state or
output of the module where it is recorded or as-
sumed, but may be signi�cant elsewhere. It is
not entirely obvious to us how to map the mod-

eling pipeline to frameworks such as the reference
model of Gunter et al [10], which is based on do-
main knowledge, requirements, speci�cations, pro-
gram and program platform.

We note that these matters are beginning to
receive commercial attention: Lemma 1 Ltd [23]
report on their ClawZ system which translates
Simulink diagrams into Z speci�cations, and the UK
company QSS [33] have interfaced their DOORS re-
quirements tool to Simulink.

8 Some new directions

The previous section paints a somewhat depress-
ing picture, suggesting that many areas which have
received considerable research attention are unlikely
to have much e�ect on the practice of modeling. We
might sum up by observing that the modeling com-
munity are users rather than creators of mathemat-
ics and software, and by and large take both the
mathematical theories underlying their work and
the largely commercial computer systems that im-
plement them pretty much for granted as \solved
problems". The main concerns lie elsewhere and
there is little interest in or motivation for change,
and a heavy personal and �nancial investment in
existing technologies.

We can none-the-less outline some ways ahead.
The modeling community, like many others, are in-
terested in new methods that �t their present world
view, address their main concerns or improve or ex-
tend existing techniques or software.
The correctness, validation and con�rmation

of models is of primary importance to the mod-
eling community, and of particular concern when
these impact public policy in matters such as nu-
clear waste disposal. It is the assumptions, data
and choice of model that seem to matter here, not
questions about correctness of the underlying math-
ematics or software once the model has been cho-
sen. We are not even aware of a suitable framework
for the analysis of requirements, speci�cations, as-
sumptions and proof obligations for modeling within
our pipeline: an extension of the reference model of
Gunter et al [10] may be appropriate. Computa-
tional logic has a useful role to play in monitoring
and analysis here, and hence in reasoning directly
about the assumptions of the \model world", the
\model" and the \implementation".
Heterogeneous distributed models are of par-
ticular current interest, put together for example
across the Internet, with disparate or legacy com-
ponents where assumptions may be concealed, con-

tradictory, or have changed over time. An engine for
managing requirements and assumptions would be
a key component technology of robust architectures
for linking such heterogeneous models. Particular
care would need to be taken over the layering issues
indicated above. Projects such as Open Math [30],
which attempt to provide reliable interface mecha-
nisms for heterogeneous mathematical systems us-
ing type inference seem relevant here also.
New analytic, numerical or visualization

techniques which leverage o� the established
mathematical and computational framework and
extend its functionality are of interest. For exam-
ple, as we have seen, computer algebra systems are
useful in the analytic study of dynamical systems,
especially those with parameters, but these are error
prone: extending them using computational logic
engines as we have indicated above adds function-
ality at little cost to the user.
Symbolic analysis Numerical analysis software
does continuous mathematics numerically, com-
puter algebra software does continuous mathemat-
ics symbolically by algebraic means, but no software
yet does continuous mathematics symbolically by
analytic means, and it is not clear how it should be
done. As we have indicated this is the underlying
reason for the de�ciencies of computer algebra sys-
tems: solving it would indeed make possible a new
generation of useful computational tools. It is not
enough to formalize existing computer algebra sys-
tems based on di�erential rings: these will not give
us true computational analysis. It is not enough to
prove theorems about real analysis inside a theorem
prover: we need to be able to do computations like
those described in Section 3 as well.

We urge the formal methods and computational
logic community to take up these challenges.

Acknowledgements

The author acknowledges support from the UK
EPSRC under grant GR/L48256 and from NAG
Ltd, with additional sabbatical support from SRI
Menlo Park and the UK Royal Academy of Engi-
neering. She thanks colleagues at Waterloo Maple,
Mathworks, MathEngine and NAG Ltd, and in the
Schools of Mathematics and of Biological Sciences
at St Andrews, and the Departments of Mathemat-
ics and of Geology at Stanford for helpful discus-
sions: any misrepresentations here are her own.

References

[1] A Adams, H Gottliebsen, S Linton, U Martin.
VSDITLU: a veri�ed symbolic de�nite integral ta-
ble look-up Proc CADE 16, LNAI 1632, 112-126,
Springer 1999

[2] M. Bronstein. Symbolic integration. I. Springer,
1997.

[3] Research Index, http://citeseer.nj.nec.com/cs

[4] N de Bruijn, The mathematical Language AU-
TOMATH, its usage, and some of its extensions, Sym-
posium on Automatic Demonstration, Lecture Notes
in Mathematics 125, Springer 1968

[5] Martin Dunstan, Tom Kelsey, Steve Linton and Ur-
sula Martin Lightweight formal methods for computer
algebra systems In ISSAC'98, ACM Press, 1998

[6] Martin Dunstan, Tom Kelsey, Steve Linton and Ur-
sula Martin Formal Methods for Extensions to CAS
Proc FM'99, LNCS 1709, 1758-1777, Springer 1999

[7] B. Dutertre. Elements of Mathematical Analysis in
PVS. Proc TPHOLS 9, LNCS 1125, Springer 1996.

[8] S Feferman, Why a little bit goes a long way: Logical
foundations of scienti�cally applicable mathematics,
in PSA 1992, Vol. II, 442-455, 1993.

[9] M E Gilpin and F J Ayala, Global models of growth
and competition, Proc Nat Acad Sci USA 70, 3590-
3593, 1973

[10] Carl A Gunter et al, A reference model for require-
ments and speci�cations, to appear IEEE Software.

[11] C A S Hall, Assessment of theoretical models, Eco-
logical Modeling 43, 5-31, 1988

[12] J Hammersley, Maxims for manipulators, Bull I M
A 9 (1973) 276.

[13] J Harrison, Floating point veri�cation in HOL. In
Proc TPHOLS 8, LNCS 971, 186-199, Springer 1995

[14] J Harrison, Constructing the Real Numbers in
HOL, Formal Methods in System Design 5 (1994) 35-
59

[15] Leslie Hatton, The T-experiments: errors in scien-
ti�c software, IEE Computational Science and Engi-
neering, 4, 27-38, 1997

[16] Leslie Hatton, personal communication.

[17] Thomas Henzinger and Pei-Hsin Ho, HyTech: The
Cornell Hybrid Technology Tool, Hybrid Systems II,
LNCS 999, 265-294, Springer, 1995.

[18] N Higham, Accuracy and Stability of Numerical
Algorithms, SIAM Press 1996

[19] R D Jenks and R S Sutor, axi.om: The Scienti�c
Computation System, Springer 1992

[20] M Jirstrand, Nonlinear Control System Design by
Quanti�er Elimination, Journal of Symbolic Compu-
tation, 24, 137-152, 1997.

[21] W Kahan, http://www.cs.berkeley.edu/ kahan

[22] B Latour and S Woolgar, Laboratory Life: the So-
cial Construction of Scienti�c Facts, Sage, London,
1979

[23] ClawZ: Lemma 1 Ltd, http://www.lemma-one.com

[24] Donald Mackenzie, The uninvention of nuclear
weapons, Chapter 10 of Knowing Machines, MIT
Press 1998.

[25] U Martin Computers, reasoning and mathematical
practice In Computational Logic, NATO Adv. Sci.
Inst. Ser. F Comput. Systems Sci., Springer 1998

[26] U Martin and H Gottliebsen, Computational logic
support for di�erential equations and mathematical
modeling, submitted.

[27] Matlab, http://www.matlab.com

[28] D Mooney and R Swift, A course in mathematical
modeling, MAA press, 1999

[29] NAG Libraries, http://www.nag.co.uk

[30] OpenMath, http://www.openmath.org

[31] N Oreskes et al, Veri�cation, validation and con-
�rmation of numerical models in the earth sciences,
Science 263, 1994, 641{646

[32] S Owre, S Rajah, J Rushby, N Shankar. PVS: com-
bining speci�cation, proof checking, and model check-
ing. In Proc CAV 8, LNCS 1102, 411-414 Springer,
1996

[33] DOORS, http://www.requirements.com

[34] Martin Sch�onert et al, GAP: groups, algorithms,
and programming, www-gap.st-and.ac.uk

[35] J Sethian, Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational Ge-
ometry, Fluid Mechanics, Computer Vision, and Ma-
terials Science, Cambridge University Press, 1999

[36] Simulink, http://www.simulink.com

[37] M Wester, Computer Algebra Systems : A Practi-
cal Guide, Wiley 1999

[38] Westpoint Consortium, Interdisciplinary Lively
Application Projects, MAA Press, 1997

[39] K Shrader-Frechette, Science Versus Educated
Guessing: Risk Assessment, Nuclear Waste, and Pub-
lic Policy, BioScience 46, 1996

Timing analysis by model checking
Dimitri Naydich and David Guaspari ∗

Odyssey Research Associates
33 Thornwood Drive, Suite 500

Ithaca, NY 14850-1250
naydich@clarityconnect.com

davidg@oracorp.com

∗ This work was partially supported by NASA Langley, contract NAS1-20335

Abstract: The safety of modern avionics
relies on high integrity software that can be
verified to meet hard real-time requirements. The
limits of verification technology therefore
determine acceptable engineering practice. To
simplify verification problems, safety-critical
systems are commonly implemented under the
severe constraints of a cyclic executive, which
make design an expensive trial-and-error process
highly intolerant of change. Important advances
in analysis techniques, such as rate monotonic
analysis (RMA), have provided a theoretical and
practical basis for easing these onerous
restrictions. But RMA and its kindred have two
limitations: they apply only to verifying the
requirement of schedulability (that tasks meet
their deadlines) and they cannot be applied to
many common programming paradigms.

We address both these limitations by
applying model checking, a technique with
successful industrial applications in hardware
design. Model checking algorithms analyze finite
state machines, either by explicit state
enumeration or by symbolic manipulation. Since
quantitative timing properties involve a
potentially unbounded state variable (a clock),
our first problem is to construct a finite
approximation that is conservative for the
properties being analyzed—if the approximation
satisfies the properties of interest, so does the
infinite model. To reduce the potential for state
space explosion we must further optimize this
finite model. Experiments with some simple
optimizations have yielded a hundred-fold
efficiency improvement over published
techniques.

1 The safety of hard real-time
software

Modern avionics relies fundamentally on

high integrity software that meets hard real-time
requirements such as schedulability—the
guaranty that all tasks meet their deadlines. It is
common to implement a high integrity real-time
system by means of a cyclic executive, in which
programmers explicitly allocate the execution of
processes or process fragments to portions of a
master control loop. This technique has the
strengths of requiring essentially no runtime
support and of making schedulability analysis
trivial. But the design of a cyclic executive is
expensive and time-consuming, relies heavily on
trial-and-error rather than systematic design
principles, and is highly intolerant of change.
Small modifications to individual processes may
require complete redesign of the master control
loop. In addition, this narrowing of the design
space potentially constrains the introduction of
automation technologies that could improve both
safety and performance.

The alternative to a cyclic executive is some
form of preemptive scheduling in which
processes are scheduled dynamically. Preemptive
scheduling immediately presents two problems:
First, static analysis of program behavior
becomes much more difficult. Second, the
runtime support required to carry out dynamic
scheduling must be efficient and must admit an
implementation simple enough to satisfy the
certification requirements for high integrity
systems. Raven [32] is an example of such a
runtime.

The best-known analysis technique for
preemptive scheduling is Rate Monotonic
Analysis (RMA) [19], which applies to a
restricted but useful class of systems and reduces
schedulability analysis to checking a set of
simple algebraic inequalities. However, RMA
does not provide information about properties
other than schedulability and is not applicable to

many common programming paradigms: Figure
1 provides an example of such a program. Nor
does RMA cover properties other than
schedulability.

This paper describes an ongoing investigation
of model checking as a supplement to RMA.
Model checking comprises automated techniques
that apply, in principle, to any system
representable as a finite state machine. These
techniques are of two general kinds: explicit
search (clever strategies for visiting all possible
states) and symbolic model checking (combining
symbolic execution and automated reasoning).
Both styles can be used to analyze properties
other than schedulability and systems that do not
meet the design restrictions imposed by RMA.
Our work shows that model checking can be
applied to some systems beyond the reach of
current analytical techniques. The technical
barrier to making these applications practical and
routine is the possibility of state space explosion.
We are investigating optimization techniques
that generate efficient representations of the
system to be analyzed.

1.1 Ravenscar and Raven
The general principles we employ are not tied

to any particular implementation, though the
details will necessarily depend on the
programming language and runtime system
being modeled. The Ravenscar Profile [8]
defines a set of Ada tasking features rich enough
to support (among other things) rate monotonic
scheduling, but requiring a minimal runtime.
Ravenscar is supported by the Raven runtime,
developed at Aonix to meet the highest FAA
certification standards for safety critical systems.
The tasking subset we consider can be regarded
as a generalization of Ravenscar, together with a
technical requirement, which we call frame
synchronization, that reduces nondeterminism by
eliminating arbitrary task phasings. Thus, the
analysis we propose can be directly applied to
real systems.

1. The main features of the Ravenscar
subset are as follows:

2. The number of tasks, and the base
priority of each, is fixed and statically
determined.

3. Scheduling is preemptive, using the
priority ceiling protocol.

4. Tasks interact only through protected
objects. No more than one task may ever

be queued on the entry of any protected
call. (This limit on the size of the entry
queues is a dynamic requirement that
cannot in general be enforced by
syntactic restrictions.)

5. Task behavior is deterministic.
 Figure 1, based on an example from [16],

illustrates a simple Ravenscar program to which
RMA does not apply. Three sensors periodically
sample flight data and send it via a bounded
buffer to an analyzer that periodically reads the
data from the buffer. The buffer is implemented
as a protected object containing a protected entry
for writing data and a protected procedure for
reading it. A read from an empty buffer returns
some conventional value. The buffer’s write
entry blocks the sensors from writing when the
buffer is full. The protected read procedure
blocks the analyzer from reading while the buffer
is being written to. (We make the read operation
a procedure rather than an entry because
Ravenscar forbids protected objects with more
than one entry. That is why read does not block
on any empty buffer, but reads some
conventional value.) RMA does not apply
because each of the periodic sensor tasks
contains a protected entry call, at which it can be
blocked.

1.2 Model-checking real-time
properties

Many existing models for real-time systems
are based on timed automata [2] or, more
generally, hybrid automata [1]. These models
contain state variables that represent the values
of real-time clocks. Notice that a direct model of
time, by means of a variable containing the
current value of the clock, leads to an infinite
state space, since the clock may increase without
bound. Some form of temporal abstraction is
required. The abstraction used to analyze hybrid
automata is to represent regions— sets of
states— symbolically, via logical formulas.
Symbolic manipulation of such formulas [20] is
the heart of model checking tools such as [4].

In [10], Corbett presents a two-stage
construction that models real-time Ada tasking
programs (together with the supporting runtime)
as hybrid automata. The first stage translates a
program to a transition system representing the
possible interleavings of the tasks’ execution.
The second stage captures the timing constraints
of the program by transforming the transition

 Sensor1

Buffer Analyzer Sensor2

 Sensor3

Figure 1: A Ravenscar example to which RMA does not apply

 system into a hybrid automaton. This hybrid
automaton is then analyzed by the HyTech
verifier [11], which can be regarded as symbolic
model checker.

In [16], we developed a method for
constructing models of real-time tasking
programs in Promela [12], a language for
specifying communicating sequential processes.
The program’s tasks and the runtime system are
represented as Promela processes. The frame
synchronization requirement mentioned above
allows us to eliminate the real-time clocks from
the system’s model altogether and thereby to
represent the system as a simple transition
system rather than a hybrid automaton. We
introduce state variables to keep track of upper
and lower bounds on the completion time of each
process, and perform a “ dynamic abstraction” of
these time-related state variables to make the
state space finite. In essence, the pair of
completion times for each process defines the
region of states in which the process is running.
This representation is much simpler than
representation by a logical formula. We then
analyzed the Promela program with the Spin
verifier [12].

Many other formal models have been
proposed for concurrent real-time systems [3].
These include Petri nets [14], timed automata
[2], timed process algebras [17], and real-time
logics [13]. For the most part, these models are
intended to represent specification, not
implementation. In [5], general timed automata
are extended to represent such implementation
details as the assignment of tasks to processors,
priorities, worst-case execution times of
operations, and scheduling policies. Our model
compares to [5] much as it does to [10].

2 A simple illustration
This section uses a trivial example to show

how the “ dynamic time abstraction” of [16] can
be combined with reduction techniques from
[10] and illustrate its effectiveness. Although
there are enough differences that a quantitative
comparison is not strictly scientific, we obtain a
hundred-fold advantage over [10] in both speed
and memory usage and a ten-fold advantage over
[16].

2.1 A schedulability problem
Consider two periodic, non-interacting tasks,

A and B, run on a single processor under
preemptive scheduling. Task A has higher
priority than B. Although this trivial tasking
pattern can be analyzed by RMA, it allows us to
illustrate essential features of our proposed
strategy and to perform a simple comparison
with Corbett’s analysis via a hybrid automaton
model.

A code skeleton is given in Figure 2. We
assume that the variable StartTime records the
value of the system clock at some moment after
the tasks have been initialized but before they
start running. In effect, this implements the
frame synchronization assumption. StartTime
can be initialized to satisfy the assumption by
using a simple Ada coding idiom given in [16].
The code fragments <statements1> and
<statements2> implement periodic activities
whose functionality is irrelevant to the tasks’
timing. Let estimA and estimB be upper bounds
on the amount of CPU time necessary to execute
the bodies of the loops in task A and task B
respectively. We assume that CPU time is the
tasks’ only shared resource. The parameters

task A is
pragma Priority(20);

end A;

task body A is
nextA: Time = StartTime;

begin
loop
 <statements1>
nextA := nextA + periodA;
delay until nextA;
end loop;

end A;

task B is
pragma Priority(10);

end B;

task body B is
nextB: Time = StartTime;

begin
loop
 <statements2>
nextB := nextB + periodB;
delay until nextB;
end loop;

end B;

Figure 2 : A two-task problem

and periodA and periodB define the periods of
task A and task B. Execution of “ delay until t”
blocks a task until the system clock has value t.
If task A reaches its “ delay until nextA”
statement when the clock time is greater than
nextA, then task A has missed a deadline. We can
characterize a missed deadline for task B
similarly.

With this definition of deadline, we analyze
the schedulability of tasks A and B in terms of
the task periods periodA and periodB, and the
CPU time estimates estimA and estimB. As
noted, RMA handles the problem easily, but the
point of the example is to exhibit simple
optimization strategies that can dramatically
improve the efficiency of analysis by model
checking.

2.2 A discrete model
In the program of Figure 2, the only variables

affecting the timing behavior of the program are
nextA and nextB. They are the only data variables
represented in our model.

To model the program’s control state, we
completely abstract from the code fragments
within the task loops. We represent the
fragments as abstract actions whose executions
take time, and whose executions can be
preempted by higher priority actions. We model
execution of tasks A and B as periodic
invocations of these abstract actions.

In [16] we represented the runtime and each
task as a separate process. As observed in [10],
this simple-minded representation introduces
unnecessary states because the actions of the

runtime are so tightly coupled to the actions of
the tasks. That is, we know a strong invariant
that permits a more efficient abstraction of the
state space. Because task A has higher priority
than task B, we can partition the system states as
follows: task A can be either running or blocked
by its “ delay until” statement; task B can be
running, or blocked by its “ delay until”
statement, or preempted by task A; and the
system as a whole enters an error state if either
task misses a deadline. Thus, we represent the
status of the program by introducing a variable
runtime_status that can have the following
symbolic values: runningA_preemptedB,
blockedA_runningB, blockedA_blockedB,
runningA_blockedB, and missed_deadline.

We also introduce several variables to model
timing information:

1. The integer variables lb and ub specify
lower and upper bounds for the clock
time at which the currently executing
abstract action will (if not preempted)
complete. The values of these time
bounds vary dynamically, according to
the program’s control flow.

2. The integer variable delta contains an
upper bound for the CPU time needed to
complete the currently executing abstract
action. When a preempted action
resumes its execution the value of delta
will typically be revised to reflect the
progress made before preemption.

3. The integer variable preemptB, called the
preemption bound, stores the value of
delta when task B is preempted by A.

We specify the schedulability requirement by

asserting that the runtime status missed_deadline
never occurs:

Invariant "hard deadline"
 ! runtime_status = missed_deadline

The states and transitions of our model are
shown graphically in Figure 3. We define the
effect of each transition using the notation of the
Murphi model-checker [33]. The meaning of

guard ==> Begin <statements> End

is that the transition may take place when the
boolean guard is true; and, if it does take place,
the effect on the state variables is defined by the
Pascal-like code in statements. If several
transitions may take place, then the choice of
which transition to fire is non-deterministic.
(Even if the Ada code is deterministic our model
may be a conservative, non-deterministic,
approximation.) The simple model shown here
does not represent the overhead attributable to
runtime actions such as preempting a task or
restoring the state of a preempted task. Those
costs are accounted for explicitly in [16].

Figure 4 provides definitions for three
representative transitions: 1, 2, and 4. Transition
rules 1 and 2 describe the program’s behavior
when A is running and B is preempted. Rule 4
describes one of the possible behaviors of the
system when task A is blocked and task B is
running— namely, the possibility that task A may
preempt task B.

Rule 1: If the upper estimate of the clock
time for completing task A is greater than or
equal to the next deadline— that is, ub ≥
nextA+periodA— then it is possible that A may
miss its deadline; and therefore a deadline
violation will be reported. Our model is a
conservative approximation of the program. The
program will satisfy any invariant satisfied by
the model, but the converse need not be true.

Rule 2: If ub < nextA+periodA, this iteration
of task A will meet its deadline. Transition 2
represents the successful completion of A, after
which A becomes blocked until the beginning of
its next period, and hands off to task B (as
reflected by changing the value of
runtime_status to blockedA_runningB). To do
the necessary bookkeeping, the other state
variables are modified as follows:

• nextA, the next clock time at which task
A becomes ready to run, is incremented
by the value of its period,

• delta, the estimate of the remaining CPU
time to complete task B, is restored to
the preemption bound of B,

• ub, which now represents an upper
estimate of the clock time at which task
B will complete, is increased by delta,

• since the preemption of B has now been
accounted for, we reset preemptB to
zero.

Rule 4: The guard for transition 4 represents
the following possibility: task B will, if not
preempted, meet its deadline; but task A becomes
ready before the action of task B completes and
therefore preempts B. Among the actions of rule
4, the interesting new feature is a call to
procedure time_wrap, which is essential for
making our model finite.

The state variables nextA, nextB, lb, and ub
are regularly incremented. If we allowed them to
increase without bound our model’s state space
would be infinite. However, the presence or
absence of a deadline violation depends only on
the relative values of these variables, not on their
absolute values. Therefore, the relevant timing
behavior of our model does not change if we
recalibrate by simultaneously decreasing nextA,
nextB, lb, and ub by the same amount. Procedure
time_wrap does the recalibration, decrementing
all these variables by the current value of lb. Our
transition rules will invoke time_wrap
immediately after any increment to lb. This is a
form of rolling, dynamic time abstraction.

This recalibration strategy will succeed in
bounding the values of these variables if the
differences between the values of nextA, nextB,
lb, and ub are bounded. It is shown in [16] that,
for all the executions of the model in which no
deadline is missed, the absolute values
|nextA−lb|,|nextB−lb|, and |ub−lb| will all be less
than 2*max(periodA, periodB). Therefore we can
statically restrict the range of the time variables
to –MAX .. MAX, where MAX=2*max(periodA,
periodB). To be more precise, if there is a
deadline violation in the infinite model (from
which all occurrences of time_wrap have been
deleted), then there is a deadline violation in the
recalibrated model, and it will be detected before

runningA_blockedB

blockedA_blockedB

runningA_preemptedB

blockedA_runningBmissed_deadline Rule 9 Rule 3

 Rule 1

 Rule 10 Rule 11

 Rule 6 Rule 7

 Rule 5

 Rule 8

 Rule 2

 Rule 4

Figure 3: The transition system model

Rule "1"
runtime_status=

runningA_preemptedB
& ub >= nextA + periodA

==>
Begin

runtime_status :=
missed_deadline;

End;

Rule "2"
runtime_status =

runningA_preemptedB
& ub < nextA + periodA
 ==>
Begin
nextA := nextA + periodA;
runtime_status :=

blockedA_runningB;
delta := preemptB;
ub := ub + preemptB;
preemptB := 0;
End;

Rule "4"
runtime_status = blockedA_runningB
& ub < nextB + periodB
& nextA < ub
==>
Begin

runtime_status:=runningA_preempte
dB;

preemptB := (ub - nextA < delta) ?
 (ub - nextA) :

delta;
delta := estimA;
lb := nextA;
ub := nextA + estimA;
time_wrap();
End;

Figure 4: Representative transition rules

 execution of the model attempts an update that
puts these variables out of range.

2.3 A comparison
Our experiment analyzed the example of

section 2.1 in three ways: We applied Murphi to
the transition system defined in section 2.2; we

applied HyTech to the hybrid automaton
constructed by the methods of [10] alone; we
applied SPIN to the model constructed by the
methods of [16] alone. The comparison with
[10], for various values of the parameters, is
shown in the charts below.

We suspect that that the advantage of these

estimA=5, periodA = 10,
estimB = 10, periodB = 30

Transition system Hybrid automaton

Number of states/regions 11 8

CPU time (sec) 0.10 0.24

Memory used 1K 0.82M

estimA = 29, periodA = 59,
estimB = 61, periodB = 181

Transition system Hybrid automaton

Number of states/regions 1002 480

CPU time (sec) 0.10 13.73

Memory used 25K 4.53M

estimA = 167, periodA = 353,
estimB = 313, periodB = 997

Transition system Hybrid automaton

Number of states/regions 5013 2700

CPU time (sec) 0.40 106.95

Memory used 163K 20.13M

Figure 5 : A comparison

optimizations will increase as the timing
constraints become more complex, because
manipulating integers is more efficient than
manipulating linear formulas with integer
coefficients. We cannot quantify how much of
the difference might be attributable to the fact
that Murphi is a more mature tool than HyTech.

The advantage over [16] is not quite so
dramatic— the improvement is one order of
magnitude, not two.

2.4 Other properties
This section briefly considers problems other

than schedulability. The model and the size of
the state space depend on the property analyzed.
For example, in the terminology of Figure 2, it is
easier to analyze the assertion that “ Both tasks
always meet their deadlines” than to analyze the
assertion “ Task B always meets its deadlines,”
because uncertainty about the behavior of A
would add nondeterminism to the model. Since
the tasks of Figure 2 do not interact (except

implicitly, via preemption) there is not much to
ask about this example aside from its
schedulability.

When tasks do interact, things become more
interesting. The Ravenscar rules require that no
more than one task be waiting on the entry of
any protected call. The main purpose of this
requirement is to avoid the overhead of
maintaining queues. In general, it is undecidable
whether a program meets the requirement,
though compliance could be guaranteed by
making severe static semantic restrictions on the
code. The Raven runtime raises an error
dynamically if execution ever violates the
requirement. Thus, it is important to be able to
check this rule by static analysis. A
schedulability model of the kind suggested in
this section already encodes enough information
in its state to answer this question. Analysis of
the length of entry queues is insensitive to the
recalibration trick.

Deadlock freedom is another interesting

question that should be amenable to our
techniques. The priority ceiling protocol itself
suffices to guarantee that a certain class of
tasking programs cannot deadlock, but the
general question is undecidable. (This problem
is also insensitive to recalibration.)

2.5 Limitations
We might hope for a divide-and-conquer

approach whereby knowing that the system is
schedulable— for example, in cases where RMA
is applicable— might permit us to produce a
simpler model with which we might verify other
properties. However, if the precise timing
behavior of the program is necessary to
guarantee those properties, we must represent
that behavior in our model and therefore encode
the schedulability problem within it. In effect,
verifying schedulability is automatically part of
verifying any property at all. Unfortunately, the
intricacies and timing of task interleavings are
the principal source of state space explosion.

Our experience thus far suggests that the
effectiveness of our methods will depend more
on the underlying set of tasking primitives than
on a discipline restricting the patterns in which
they are used. Interrupts are especially
interesting, and present special problems. In the
model of [16] we found that code with interrupts
typically resulted in a state space explosion.
Symbolic model checking may be applicable to
this case. On the other hand, several tasking
constructs omitted by the Ravenscar Profile seem
amenable to model checking analysis: absolute
delay statement; rendezvous; select statements.

3 More realistic examples
This section briefly describes the application

of our model-checking techniques to more
realistic examples. We summarize experiments
using the methods of [16] on a modest work
station, which we have not had the opportunity
to repeat with the optimizations proposed above.
These examples employ the main Ravenscar
tasking constructs such as “ delay until”
statements, protected procedures and entries,
interrupts, and sporadic tasks triggered by
interrupts.

The modeling of interrupts and sporadic tasks
is the most complicated part of the model of
[16]. Conceptually, a sporadic task is triggered
by an interrupt and must complete its response
interrupt within a specified response time. Each

interrupt is characterized by its minimum
interarrival time— the minimum time between
two consecutive occurrences of the interrupt.
The minimum interarrival time and the response
time for each interrupt are parameters of the
model.

To implement sporadic tasks we use an Ada
idiom required by the Ravenscar programming
discipline: The response to an interrupt I is
performed by a sporadic task T whose body is a
loop. The head of that loop is a call on a
protected entry E, so that task T is blocked at the
head of the loop so long as entry barrier of E is
false; and the last act of the loop is to reset the
entry barrier of E to true. The text of an Ada
program binds interrupt I to a protected
procedure P, which will be executed by the
runtime whenever I occurs; and, in this
programming idiom, P must be implemented so
that its only effect is to change the entry barrier
of E from false to true. Thus, when interrupt I
occurs, the runtime executes P, which sets the
barrier of E to true; that unblocks task T, which
performs the response to the interrupt, resets the
barrier of E to false, and becomes suspended.

We permit tasks to contain both “ delay
until” statements and entry calls. For our
purposes, a task containing a “ delay until”
statement is periodic. A sporadic task contains a
call on a protected entry whose barrier is set by
an interrupt handler. Since we impose no upper
limit on the interrupt interarrival time, a sporadic
task cannot be guaranteed to satisfy any periodic
deadline. For this reason, sporadic tasks may not
contain ‘delay until’ statements. The Promela
code checks that all periodic tasks meet their
deadlines and that the response to every interrupt
completes within the response time.

We have analyzed several systems containing
both periodic and sporadic tasks, all on a
SparcServer20 with 64 megabytes of memory.

One is a toy pump control system [29] often
used as a benchmark example, which our
techniques handled in seconds. With some more
complicated systems, however, the model of [16]
encountered a state space explosion. We describe
two such examples:
1. the Olympus attitude and orbital control

system (AOCS) [30],
2. a brewery control program [31].

A pump controller
The pump control system has the following

components:

1. four periodic tasks getting data from the four
sensors and controlling the pump,

2. a sporadic task, triggered by the interrupt
from a high/low water level detector, that
controls the pump, and

3. two protected objects for the pump and the
interrupt interface.

Verification of this program took 20 seconds.

The AOCS
The AOCS design contains 17 protected

objects, 4 sporadic tasks driven by interrupts
(with short interarrival times), and 10 periodic
tasks (with relatively long periods). We were
able to verify a reduced version with all 10
periodic tasks and only one sporadic task
(roughly 1.5 hours of computation). Adding a
second sporadic task resulted in a state space
explosion that SPIN could not handle.

A Brewery controller
Our techniques successfully identified a

timing error in the brewery control program, but
the analysis required some abstractions
performed by hand, not merely the “ standard”
abstractions used to represent the pump
controller.

The brewery control program contains no
interrupts. It consists of an alarm task suspended
on a protected entry, several short-period tasks,
and one long-period task that calculates a
“ pattern temperature.” One of the short-period
tasks compares the actual temperature to the
pattern and, if the difference between the
temperatures is too great, opens the entry barrier
to trigger the alarm. We model the decision
about whether to trigger the alarm as a
completely nondeterministic event (a
conservative approximation).

We may eliminate the long-period task
altogether if we assume that the pattern
temperature is constant. Under that assumption
(also conservative) our methods took 6 minutes
of computation to find a timing violation.

If we do not assume that the pattern
temperature is constant, the combination of a
long-period task with a short-period task
nondeterministically triggering another task
results in a state space explosion (as explained
below).

The size of our model’s state space is
proportional to SP, where:
1. P is the number of possible patterns of the

periodic tasks’ arrival times. (A task arrives

whenever it begins a new period.). P is
roughly proportional to (M/D), where M is
the least common multiple of the task
periods and interrupt interarrival times, and
D is their greatest common divisor.

2. S is the average number of non-deterministic
choices exercised by the model during the
execution of any one pattern of arrival times.
A common source of non-determinism is the
runtime process controlling task preemption.
However, this nondeterminism is usually
restricted, since the control-delegating
conditions in the runtime process are often
mutually exclusive. Thus, the runtime
process does not contribute much to the size
of S. On the other hand, nondeterministic
behavior in a short-period task will increase
S, since this behavior is exercised in the
many patterns where the task is running.

Our problem with the brewery control
program is that the short-period task
nondeterministically triggers the alarm, which
increases S. We can still analyze the program if
P is low, but including the long-period task
increases P. This combination increases SP

sufficiently to cause a state explosion.
As for the interrupts, in [16] we model each

interrupt by a Promela process representing a
“ quasi-task” that makes calls on the protected
procedure that is its handler. The behavior of
such a task is in many respects similar to the
behavior of a periodic task that non-
deterministically executes the interrupt handler
and has a period equal to the interrupt’s
minimum interarrival time.

4 Future research
Our primary technical problem is how to

optimize the model for efficient model-checking.
The optimizations described in section 2— the
runtime status abstractions, the encoding of
regions as pairs of integers— are specific to our
problem domain and to the kinds of properties
being analyzed. There is an extensive literature
on general-purpose algorithms for abstractions
and optimizations of untimed transition systems,
and on the automated discovery of invariants.
(See, for example, [21-24]). Future research will
consider the applicability of that literature to our
problem.

Symbolic model checking is another
possibility for dealing with state space explosion.
Problems that do not yield to explicit search

techniques can sometimes be solved by symbolic
model checking (and vice versa). The state-
machine model accepted by a symbolic model
checker is typically quite low-level and
constrained. Not all symbolic model checkers
permit variables of integer type. But some, such
as WSMV [9], are able to treat integers and
certain integer operations symbolically by using
special encoding techniques that permit efficient
representation of addition and integer
comparisons, and those are precisely the
arithmetical operations our methods require.
Thus, WSMV is a promising engine for
extending our results with symbolic model
checking.

References
[1] R. Alur, C. Coucoubetis, T.A. Henzinger,

P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science 138, pp.
3-34, 1995.

[2] R. Alur and D. L. Dill. A theory of timed
automata. Theoretical Computer Science 126,
pp. 183-235, 1994.

[3] R. Alur and T.A. Henzinger. Logics and
Models of Real Time: A Survey. In Real-Time:
Theory in Practice, REX Workshop, LNCS 600,
pp. 74-106, 1991.

[4] R. Alur, T.A. Henzinger, and P.-H. Ho.
Automatic Symbolic Verification of Embedded
Systems. IEEE Transactions on Software
Engineering 22, pp. 181-201, 1996.

[5] K. Brink, J. Katwijk, R. Spelberg, and H.
Toetenel. Analyzing schedulability of Astral
specifications using extended timed automata.
Proceedings of the Third International Euro-Par
Conference, LNCS 1300, pp. 1290-1297,
Springer-Verlag, 1997.

[6] J. R. Burch, E. M. Clarke, K. L.
McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 10^20 states and
beyond, Information and Computation, vol. 98,
pp. 142-170, 1992.

[7] A. Burns. Preemptive Priority-Based
Scheduling: An Appropriate Engineering
Approach. In Advances in Real-Time Systems, S.
H. Son, Ed.: Prentice Hall, pp. 225-248, 1994.

[8] A. Burns, B. Dobbing, and G. Romanski.
The Ravenscar tasking profile for high integrity
real-time programs. Proceedings of Reliable
Software Technologies - Ada-Europe’98, LNCS
1411, pp. 263-275, 1998.

[9] E.M. Clarke, M. Khaira, and X. Zhao.
Word-level symbolic model checking: a new
approach for verifying arithmetic circuits. In
Proceedings of the 33rd ACM/IEEE Design
Automation Conference, IEEE Computer Society
Press, 1996.

[10] J. C. Corbett. Timing analysis of Ada
tasking programs. IEEE Transactions on
software engineering, 22(7), pp. 461-483, 1996.

[11] T.A. Henzinger, P.-H. Ho, and H.
Wong-Toi. HyTech: A Model Checker for
Hybrid Systems. Software Tools for Technology
Transfer 1, pp. 110-122, 1997.

[12] G. J. Holzmann. Design and validation
of computer protocols: Prentice Hall, 1991. (The
current version of Spin can be found at
http://netlib.bell-
labs.com/netlib/spin/whatispin.html.)

[13] C. Ghezzi, D. Mandriolli, and A.
Morzenti. Trio: A logic language for executable
specifications of real-time systems. Journal of
Systems and Software, 12(2), pp. 107-123, 1990.

[14] C. Ghezzi, D. Mandriolli, S. Morasca,
and M. Pezze. A unified high-level Petri net
model for time-critical systems. IEEE
Transactions on software engineering, 17(2),
1991.

[15] K. G. Larsen, P. Pettersson and Wang
Yi. UPPAAL in a Nutshell. In Springer
International Journal of Software Tools for
Technology Transfer 1(1+2), 1997.

[16] D. Naydich and D. Guaspari. Analyzing
Ravenscar Profile tasks by model checking.
Technical report TM-98-0034, Odyssey
Research Associates, 1998.

[17] G. M. Reed and A. W. Roscoe. A timed
model for communicating sequential processes.
Theoretical Computer Science, 58:249-261, June
1988.

[18] G. Romanski Safety critical software
handbook. Aonix, 1997.

[19] L. Sha, R. Rajkumar, and S. S. Sathaue.
Generalized Rate-Monotonic Scheduling Theory:
A Framework for Developing Real-Time
Systems. Proceedings of IEEE, vol. 82, pp. 68--
82, 1994.

[20] S. Wolfram. Mathematica: A system for
doing mathematics by computer. Adisson-
Wesley, 1988.
[21] The SAL Group. The SAL Intermediate
Language.
[22] S. Bensalem and Y. Lakhnech. Automatic
generation of invariants. To appear in Formal
Methods of System Design.

[23] S. Bensalem,Y. Lakhnech, and S. Owre.
Computing abstractions of infinite state systems
compositionally and automatically.
[24] E. M. Clarke, O. Grumberg, and D. E.
Long. Model checking and abstraction. ACM
Transactions on Programming Languages and
Systems, 16(5), 1994.
[25] M. Bickford and D. Naydich. Hardware
verification technology transfer: Application of
formal methods and modeling to the ARM6.
Tech. Rep. TM98-0021, ORA, 1998.
[26] Sast User Manual (version 0.2). Odyssey
Research Associations, 1997.
[27] Z. Chen and D. Hoover. TableWise, a
decision table tool. Proceedings of the Tenth
Annual Conference on Computer Assurance
(Compass ’95).
[28] D. Guaspari, C. Marceau, and W. Polak.
Formal verification of Ada programs. IEEE
Transactions on Software Engineering, vol. 16,
no. 9, September, 1990. Reprinted in
proceedings of the First International Workshop
on Larch, Springer-Verlag, 1993.
[29] A. Burns and A. J. Wellings, HRT-HOOD:
A Structured Design Method for Hard Real-Time
Ada Systems: Elsevier, 1995.
[30] A. Burns, A. J. Wellings, C. M. Bailey, and
E. Fyfe, “ The Olympus Attitude and Orbital
Control System: A Case Study in Hard Real-
Time System Design and Implementation,”
Proceedings of Ada sans frontiers -- 12th Ada-
Europe Conference, LNCS 688, pp. 19-35, 1993.
[31] G. Romanski, “ Ada, Concurrency and a
Safety Critical Subset,” Personal
communications, 1998.
[32] “ Raven Fact Sheet” , Aonix, 1999.
[33] David L. Dill, Andreas J. Drexler, Alan J.
Hu and C. Han Yang, “ Protocol Verification as a
Hardware Design Aid,” 1992 IEEE International
Conference on Computer Design: VLSI in
Computers and Processors, IEEE Computer
Society, pp. 522-525.

Modeling and Verification of Real-Time Software

Using Extended Linear Hybrid Automata

Steve Vestal
steve.vestal@honeywell.com
Honeywell Technology Center
Minneapolis, MN 55418∗

Abstract
Linear hybrid automata are finite state automata

augmented with real-valued variables. Transitions be-
tween discrete states may be conditional on the val-
ues of these variables and may assign new values to
variables. These variables can be used to model real
time and accumulated task compute time as well as
program variables. Although it is possible to encode
preemptive fixed priority scheduling using existing lin-
ear hybrid automata models, we found it more general
and efficient to extend the model slightly to include
resource allocation and scheduling semantics. Under
reasonable pragmatic restrictions for this problem do-
main, the reachability problem is decidable. The proof
of this establishes an equivalence between dense time
and discrete time models given these restrictions. We
next developed a new reachability algorithm that sig-
nificantly increased the size of problem we could ana-
lyze, based on benchmarking exercises we carried out
using randomly generated real-time uniprocessor work-
loads. Finally, we assessed the practical applicabil-
ity of these new methods by generating and analyz-
ing hybrid automata models for the core scheduling
modules of an existing real-time executive. This ex-
ercise demonstrated the applicability of the technology
to real-world problems, detecting several errors in the
executive code in the process. We discuss some of the
strengths and limitations of these methods and possi-
ble future developments that might address some of the
limitations.

1 Introduction
The first goal of the work described in this pa-

per was to analyze the schedulability of real-time sys-
tems that cannot be easily modeled using traditional
scheduling theory. Traditional real-time task mod-
els cannot easily handle variability and uncertainty in
clock and computation and communication times, syn-
chronizations (rendezvous) between tasks, remote pro-
cedure calls, anomalous scheduling in distributed sys-
tems, dynamic reconfiguration and reallocation, end-
to-end deadlines, and timeouts and other error han-
dling behaviors.

∗This work has been supported by the Air Force Office of
Scientific Research under contract F49620-97-C-0008.

The second goal was to verify software implemen-
tations of systems. Task schedulers and communica-
tions protocols are reactive components that respond
to events like interrupts, service calls, task comple-
tions, error detections, etc. We would like to model
important implementation details such as control logic
and data variables in the code. We would like the map-
ping between model and code to be clear and simple
to better assure that the model really does describe
the implementation.

Discrete event concurrent process models are widely
used to model control flow within and interactions be-
tween concurrent activities. Classical discrete event
concurrent process models do not deal with resource
allocation and scheduling or data variables, which lim-
its their usefulness for real-time systems and makes
it awkward to model some implementation details.
Classical preemptive scheduling models do not deal
well with complex task sequencing and interaction,
which limits their usefulness for describing distributed
systems and implementation details. Discrete time
models have been developed for real-time schedul-
ing of concurrent processes[23, 13, 11, 31], and some
work has been done on dense time real-time pro-
cess algebras[10, 14]. This paper describes the use of
dense time linear hybrid automata models to perform
schedulability analysis and to verify implementation
code.

The first problem we faced was the modeling of re-
source allocation and scheduling behaviors using hy-
brid automata. The applicability in principle of hy-
brid automata to the scheduling problem was already
known[4]. We wanted a model that would admit
a variety of complex allocation as well as schedul-
ing algorithms, e.g. load balancing, priority inheri-
tance. We wanted to be able to change the allocation
and scheduling algorithms easily without changing the
models of the real-time tasks themselves. We wanted
to minimize the number of states and variables added
to model allocation and scheduling. We found it most
general and efficient to extend the definition of hybrid
automata to include resource allocation and schedul-
ing semantics rather than try to model the scheduling
function as a hybrid automaton.

We use integration variables to record the accumu-
lated compute time of tasks in preemptively sched-

uled systems. Allowing integration variables is known
to make the reachability problem undecidable[22, 17].
We were curious about whether analysis of real-time
allocation and scheduling in distributed heterogeneous
systems is itself a fundamentally difficult problem, or
if general linear hybrid automata are more powerful
than is really necessary for this problem. We were
able to show that the reachability problem becomes
decidable when some simple pragmatic restrictions are
placed on the model.
The second problem we faced was the computa-

tional difficulty of performing a reachability analysis.
We began our work using an existing linear hybrid
automata analysis tool, HyTech[18], but found our-
selves limited to very small models. We developed
and implemented a new reachability method that was
significantly faster, more numerically robust, and used
less memory. However, our prototype tool allows only
constant rates (not rate ranges) and does not provide
parametric analysis.
Using this new reachability procedure we were able

to accomplish one of our goals: the modeling and ver-
ification of a piece of real-time software. We devel-
oped a hybrid automata model for that portion of the
MetaH real-time executive that implements unipro-
cessor task scheduling, time partitioning and error
handling[1]. We successfully analyzed these models,
uncovering several implementation defects in the pro-
cess. There are limits on the degree of assurance that
can be provided, but in our judgement the approach
may be significantly more thorough and significantly
less expensive that traditional testing methods. This
result suggests the technology has reached the thresh-
old of practical utility for the verification of small
amounts of software of a particular type.
However, we do not believe existing reachability

methods are adequate yet for schedulability analysis
of real systems. In our judgement, we would need to
be able to analyze systems having a few dozen tasks
on a few processors in order for the technology to be-
gin finding use in this area. We discuss approaches
that might lead to such improvements.

2 Resourceful Hybrid Automata
A hybrid automaton is a finite state machine aug-

mented with a set of real-valued variables and a set
of propositions about the values of those variables.
Figure 1 shows an example of a hybrid automaton
whose discrete states are preempted, executing and
waiting; and whose real-valued variables are c and t.
Waiting is marked as the initial discrete state, and c
and t are assumed to be initially zero.
Each of the discrete states has an associated set of

differential equations, e.g. ċ = 0 and ṫ = 1 for the
discrete state preempted. While the automaton is in
a discrete state, the continuous variables change at the
rates specified for that state.
Edges may be labeled with guards involving con-

tinuous variables, and a discrete transition can only
occur when the values of the continuous variables sat-
isfy the guard. When a discrete transition does occur,
designated continuous variables can be set to desig-
nated values as specified by assignments labeling that

edge.
A discrete state may also be annotated with an

invariant constraint to assure progress. Some dis-
crete transition must be taken from a state before
that state’s invariant becomes false. For example, the
hybrid automaton in Figure 1 must transition out of
state computing before the value of c exceeds 100.
The hybrid automata of interest to us are called

linear hybrid automata because the invariants, guards
and assignments are all expressed as sets of linear con-
straints. The differential equations governing the con-
tinuous dynamics in a particular discrete state are re-
stricted to the form ẋ ∈ [l, u] where [l, u] is a fixed
constant interval (our current prototype tool is fur-
ther restricted to a singleton rate, ẋ = [l, l]).
We want to verify assertions about the behavior of

a hybrid automaton. Although it is possible in general
to check temporal logic assertions[4], we make do by
annotating discrete states and edges with sets of linear
constraints labeled as assertions. These constraints
must be true whenever the system is in a discrete state
or whenever a transition occurs over an edge.
The cross-product construction used to compose

concurrent finite state processes can be extended in
a fairly straight-forward way to systems of hybrid au-
tomata. The invariant and assertion associated with a
discrete system state are the conjunction of the invari-
ants and assertions of the individual discrete states.
The guards, assertions and assignments of synchro-
nized transitions are the conjunction and union of the
guards, assertions and assignments of the individual
discrete co-edges. If there is a conflict between the rate
assignments of individual discrete states, or a conflict
between the variable assignments of co-edges, then
the system is considered ill-formed. Note that con-
current hybrid automata may interact through shared
real-valued variables as well as by synchronizing their
transitions over co-edges.
The application of interest in this paper is the anal-

ysis and verification of real-time systems. Figure 1
shows an example of a simple hybrid automata model
for a preemptively scheduled, periodically dispatched
task. A task is initially waiting for dispatch but may
at various times also be executing or preempted. The
variable t is used as a timer to control dispatching
and to measure deadlines. The variable t is set to 0
at each dispatch (each transition out of the waiting
state), and a subsequent dispatch will occur when t
reaches 1000. The assertion t ≤ 750 each time a task
transitions from executing to waiting (each time a task
completes) models a task deadline of 750 time units.
The variable c records accumulated compute time, it
is reset at each dispatch and increases only when the
task is in the computing state. The invariant c ≤ 100
in the computing state means the task must complete
before it receives more than 100 time units of processor
service, the guard c ≥ 75 on the completion transition
means the task may complete after it has received 75
time units of processor service (i.e. the task compute
time is uncertain and/or variable but always falls in
the interval [75, 100]).
In this example the edge guards selected and

unselected represent scheduling decisions made at

executingpreempted

t 1000<_

t := 0
c := 0

c 100<_
waiting

c = 1
.
t = 1
.

if c 75>_

c = 0
.
t = 1
.

if unselected

if selected

if t = 1000
and selected

t := 0
c := 0 if t = 1000

and unselected

c = 0.
t = 1
.

 t 750<_assert

Figure 1: A Hybrid Automata Model of a Preemptively Scheduled Task

scheduling events (called scheduling points in the real-
time literature). These decisions depend on the avail-
able resources (processors, busses, etc.) being shared
by the tasks. There are several approaches to intro-
duce scheduling semantics into a model having several
concurrent tasks.
Scheduling can be introduced using concepts taken

from the theory of discrete event control[26]. A con-
current scheduler automaton can be added to the sys-
tem of tasks. The scheduling points in the task set
become synchronization events at which the scheduler
automaton can observe the system state and make
control decisions. Many high-level concepts from dis-
crete event control theory carry over into this domain,
such as the importance of decentralized control and
limited observability in distributed systems.
Discrete event control theory provides an approach

to synthesize optimal controllers, which in this do-
main translates to the automatic construction of
application-specific scheduling algorithms. However,
classical discrete event control theory does not deal
with time. The theory has been extended to synthesize
nonpreemptive schedulers for timed automata[9, 2],
but this excludes preemptively scheduled systems. It
is possible to develop scheduling automata by hand
using traditional real-time scheduling policies such as
preemptive fixed priority. Some examples have been
given in the literature, where each distinct ready queue
state is modeled as a distinct discrete state of the
scheduler automaton[4]. This would allow a very large
class of scheduling algorithms to be modeled, but the
size of the scheduler automaton may grow combinato-
rially with the number of tasks.
It is possible to model preemptive fixed priority

scheduling by encoding the ready queue in a variable
rather than in a set of discrete states. A queue vari-
able is introduced that will take on only integer values.
At each transition where a task i is dispatched, 2i is
added to this queue variable; at each transition where
task i completes, 2i is subtracted. The queue vari-
able can be interpreted as a bit vector whose ith bit is
set whenever task i is ready to compute. There is no

separate scheduler automaton, the scheduling protocol
is modeled using additional guards and states in the
task automata. This is the approach we took when
we started our work using HyTech. This encodes a
specific scheduling protocol into each task model, and
adds additional discrete states, variables and guards
to the model. It is awkward to model any scheduling
policy other than simple preemptive fixed priority.
In the end, we found it simpler and more general

to define a slightly extended linear hybrid automata
model that includes resource scheduling semantics[28].
The discrete state composition of the task set is per-
formed before any scheduling decisions are made. A
scheduling function is then applied to the composed
system discrete state to determine the variable rates
to be used for that system state. In essence, the com-
posed system discrete state is the ready queue to which
the scheduling function is applied, very much analo-
gous to the way run-time scheduling algorithms are
applied in an actual real-time system. It is not nec-
essary to have different discrete states for preempted
and computing, since this information is now captured
in the variable rates. It is not necessary to model a
scheduling algorithm as a finite state control automa-
ton added to the system, it is not necessary to encode a
specific scheduling semantics into the task automata.
One simply codes up a scheduling algorithm in the
usual way and links it with the rest of the reachabil-
ity analysis code. This approach significantly reduces
the number of discrete states in the model (from 3t

for our HyTech models to 2t for our extended models,
where t is the number of tasks). This also simplifies
the modeling of the desired scheduling discipline. The
details of this model and its semantics are recorded
elsewhere[28].

3 Decideability
Most traditional real-time schedulability problems

are solvable in polynomial time or are NP-complete.
However, hybrid automata models that allow multiple
rates and integration variables are undecideable[22,
17]. The hybrid automata models we are using are
much more powerful than traditional allocation and

scheduling models, and most existing tasking and
scheduling models can be viewed as special cases of
the more general hybrid automata model. This raises
the question of whether the schedulability problem for
complex interacting tasks that are dynamically allo-
cated in distributed heterogeneous systems is in fact
undecideable, or whether models of such systems are
decideable special cases of the more powerful linear
hybrid automata models.
The undecideability of hybrid automata reachabil-

ity analysis was proved by reducing the reachability
problem for two-counter machines, which is known to
be undecideable, to the reachability problem for hy-
brid automata[22, 17]. The construction used in the
proof is fairly straightforward in our slightly extended
model and can be accomplished using a single pro-
cessor. However, a pragmatic real-time system de-
signer would reject the theoretical construction as a
bad design because it relies in places on exact equal-
ity comparisons between timers and accumulated com-
pute times. In a real system, these would be regarded
as race conditions or ill-defined behaviors. The prob-
lem becomes decideable given a few simple practical
restrictions, which are captured in the following theo-
rem.

Theorem 1 The reachability problem is decideable
for resourceful linear hybrid automata if the following
conditions hold.

• The set of possible outputs of the scheduling func-
tion for each possible system discrete state is finite
and enumerable.

• For every task activity integrator variable, the
rate interval remains fixed between resets of that
integrator (i.e. the scheduler does not dynamically
reallocate any task activity in mid-execution to a
new resource having a different rate for that ac-
tivity).

• For every task activity integrator variable, every
edge guard is a set of rectangular constraints of
the form x ∈ [l, u], and either the edge guard has
a non-singular interval (x ∈ [l, u] with l < u)
or else the rate interval for ẋ is non-singular (i.e.
system behavior does not depend on exact equality
comparisons with exact drift-free clocks or execu-
tion rates).

• However, we allow as a special exception task ac-
tivity integrator variables with singular rate inter-
val and singular rectangular edge guards, provid-
ing the integrator variable is only reset or stopped
or restarted at a transition having at least one
edge guard y ∈ [m,m] with [m,m] and ẏ singu-
lar (y may but need not be x), and for every such
singular constraint on that edge ẋ = kẏ for some
positive integer k (i.e. some types of noninteract-
ing or harmonically interacting behaviors may be
modeled exactly).

This result should not be surprising. The ability
to test for exact equality is known to add theoretical

power to dense time temporal logics[3], and similar
restrictions are known to make certain other hybrid
automata models decideable[25]. The proof of this
theorem, which we provide elsewhere[28], is by reduc-
tion to a discrete time finite state automaton.

4 Reachability Analysis
A state of a linear hybrid automaton consists of a

discrete part, the discrete state at some time t; and
a continuous part, the real values of the variables at
time t. It turns out that, although this state space
is uncountably infinite, the reachable state space for
a given linear hybrid automaton is a subset of the
cross-product of the discrete states with a recursively
enumerable set of convex polyhedra in �n (where n is
the number of variables)[4]. A region of a linear hy-
brid automaton is a pair consisting of a discrete state
and a convex polyhedron, where convex polyhedra can
be represented using a finite set of linear constraints.
Model checking consists of enumerating the reachable
regions for a given linear hybrid automaton and check-
ing to see if they satisfy the assertions.
Figure 2 depicts the basic sequence of operations

that, given a starting region (a discrete state and a
polyhedron defining a set of possible values for the
variables), computes the set of values the variables
might take on in that discrete state as time passes;
and computes a set of regions reachable by subsequent
discrete transitions.
The first step is the computation of the time suc-

cessor polyhedron from the starting polyhedron (of-
ten called the post operation). For each point in the
starting polyhedron, the time successor of that point
is a line segment beginning at that point whose slope
is defined by the variable rates specified for the dis-
crete state. This is the set of variable values that
can be reached from a starting point by allowing some
amount of time to pass. The time successor of the
starting polyhedron is the union of the time successor
lines for all points in the starting polyhedron. A ba-
sic result of linear hybrid automata theory is that the
time successor of any convex polyhedron is itself a con-
vex polyhedron (which in general will be unbounded
in certain directions)[4].
The second step is the intersection of the time suc-

cessor polyhedron with the invariant constraint asso-
ciated with the discrete state. Polyhedra are easily
intersected by taking the union of the set of linear
constraints that define the two polyhedra. This is the
time successor region that is feasible given the invari-
ant specified for the discrete state.
The remaining steps are used to compute new re-

gions reachable from this feasible time successor re-
gion by some transition over an edge. For each edge
out of the current discrete state, the associated guard
is first intersected with the feasible time successor re-
gion. This polyhedron, if nonempty, defines the set
of all variable values that might exist whenever the
discrete transition could occur. Any variable assign-
ments associated with the edge must now be applied
to this polyhedron. This is done in two phases. First,
a variable to be assigned a new value x := l is uncon-
strained (often called the free operation). This oper-

S0 S1
S0

assign X := [4,5]2

S1

S0

invariant constraint

S1 S0

guard

S1

S0 S1 S0

time successor polyhedron

S1

Step 1: Time Successor

Step 2: Intersection with Invariant Step 3: Intersection with Guard

Step 4: Unconstrain Assigned Variable Step 5: Intersect with Assignment Constraint

starting
polyhedron

starting
discrete state

if Guard then X := [4,5]2 if Guard then X := [4,5]2

if Guard then X := [4,5]
2

if Guard then X := [4,5]
2

if Guard then X := [4,5]
2if Guard then X := [4,5]

2

unconstrain X
2

after t
2

after t1

Figure 2: Hybrid Automata Reach Forward Operations

ation leaves unchanged the relationships between all
other variables, i.e. the polyhedron is projected onto
the subspace �n−1 of the remaining variables. This
result is then intersected with the constraint x = l.
This polyhedron, together with the discrete state to
which the edge goes, is a new region for which the

above steps may be repeated. In general a set of as-
signments whose right-hand sides are linear formula
are allowed, with some restrictions. The variables to
be assigned are unconstrained and the resulting poly-
hedra are then intersected with the appropriate linear
constraints in some order. With care, fairly complex

sequences of assignments to program variables can be
modeled on a single edge[30].
The overall method begins at the initial region of

a hybrid automaton. The operations described above
are applied to enumerate feasible time successor re-
gions and the new regions reachable from these via
discrete transitions. As new regions are enumerated,
they must be checked to see if they have been visited
before (otherwise the method will not terminate even
when there are a finite number of regions). This is
done by comparing the discrete states of regions for
equality, and by checking to see if the new polyhedron
is contained in the polyhedron of a previously visited
region.
The earliest reachability tool of which we are aware,

HyTech, represented polyhedra as finite sets of linear
constraints[4]. Operations on polyhedra used quan-
tifier elimination, a method to manipulate and make
decisions about systems of linear constraints in which
some of the variables are existentially quantified. Sub-
sequent tools, Polka and a later version of HyTech,
used a pair of representations: the traditional system
of linear constraints together with polyhedra gener-
ators consisting of sets of vertices and rays[16, 18].
Different operations required during reachability are
more convenient in the different representations, and
methods are used to convert between the two as
needed.
Both of these methods are subject to the theoreti-

cal risk that some polyhedra operations may require a
combinatorial amount of time. Another potential per-
formance problem occurs when the reachable discrete
state space is completely enumerated first followed by
an enumeration of the polyhedra. This might result
in enumerating discrete states that are actually not
reachable due to edge guards involving the continuous
variables. Finally, in our experiments we found that a
significant fraction of a set of benchmark schedulabil-
ity problems we tried to solve using HyTech resulted
in numeric overflow errors.
We developed a new set of algorithms for the poly-

hedra operations used during reachability analysis and
implemented a prototype on-the-fly reachability anal-
ysis library. Our prototype operates on lists of linear
constraints of the form l ≤ e ≤ u where l and u are
fixed constant integer bounds and e = c1x1+c2x2+ ...
is a linear formula with fixed constant integer coeffi-
cients. Our current algorithms restrict variable rates
to be fixed scalar constants, ẋ = i rather than the
more general ẋ ∈ [l, u].
We convert a polyhedron P into Post(P, ẋ), the

time successor of P given a vector of variable rates
ẋ, by applying the two steps

1. Let each constraint li ≤ ei ≤ ui where ėi �= 0 be
written so that ėi > 0, which can be achieved by
multiplying the constraint by -1 if needed. For
each distinct pair of constraints

li ≤ ei ≤ ui
lj ≤ ej ≤ uj

where ėi > 0 and ėj > 0, add to the set the

constraint

ėjli − ėiuj ≤ ėjei − ėiej ≤ ėjui − ėilj

2. Replace each constraint l ≤ e ≤ u where ė > 0 by
l ≤ e ≤ ∞.

We compute Free(P, x), the result of unconstraining
variable x in polyhedron P , using the two steps

1. Let each constraint l ≤ e ≤ u in P where e has an
instance of x be written in the form l ≤ cx− e′ ≤
u, where e′ involves the remaining variables and
their coefficients and c > 0. For every distinct
pair of such constraints in P

li ≤ cix− ei ≤ ui
lj ≤ cjx− ej ≤ uj

combine the two in a way that cancels the x terms,
adding to Free(P, x) the constraint

cjli − ciuj ≤ ciej − cjei ≤ cjui − cilj

2. Each constraint l ≤ e ≤ u where e has no in-
stances of variable x is added to Free(P, x).

These algorithms might be viewed as general-
izations of the difference methods used for timed
automata[12, 8] and exhibit some similarity to
the pragmatic algorithm used earlier for quantifier
elimination[4]. Our prototype invokes a Simplex al-
gorithm as part of the operations to test for feasibility
and containment. We use a bounds tightening pro-
cedure to reduce the size of the constraint list after
certain operations and to rapidly detect most infeasi-
ble polyhedra. Simplex-based reduction and feasibil-
ity testing is only applied when the bounds tightening
procedure is ineffective. Details of our reachability
analysis methods and implementation and proofs of
correctness are documented elsewhere[29].
We benchmarked our prototype tool against

HyTech and Verus[11] (a discrete timed automata
reachability analysis tool that uses BDD techniques)
using randomly generated uniprocessor workloads con-
taining mixtures of periodic and aperiodic tasks. Fig-
ure 3 shows the percentage of problems that were
solved by each of the tools, together with the primary
reasons that solution was not achieved. Figure 4 com-
pares the time required for solution for problems that
were solved by all the tools using a logarithmic scale (a
point appears for both HyTech and our prototype only
for problems that were solved by both). We further
increased the size of model we could analyze by ap-
plying some results from traditional scheduling theory
to simplify the models, and by using a simple partial
order reduction technique, these results are reported
elsewhere[29].

5 Verifying the MetaH Executive
MetaH is an emerging SAE standard language for

specifying real-time fault-tolerant high assurance soft-
ware and hardware architectures[1, 24, 27]. Users

20%

40%

60%

80%

1 2 3 4 5 6 7 8

HVP HVP HVP HVP HVP HVP HVP HVP

solved

cpu > 1 hr

memory > 300M

numeric error

Verus Prototype

number of tasks in workload

other

HyTech

Figure 3: Percentage of Generated Problems That Were Solved

0.0625

0.25

1

4

16

64

256

1024

4096

0 1 2 3 4 5 6 7

so
lu

tio
n

tim
e

in
 s

ec
on

ds

number of tasks

HyTech average
Verus average

prototype average
HyTech

Verus
prototype

Figure 4: Solution Times for Problems That Were Solved

specify how software and hardware components are
combined to form an overall system architecture. This
specification includes information about one or more
configurations of tasks and message and event connec-
tions; and information about how these objects are
mapped onto a specified hardware architecture. The
specification includes information about timing behav-
iors and requirements, fault and error behaviors and
requirements, and partitioning and safety behaviors
and requirements.

Our current MetaH toolset, illustrated in Figure 5,
can generate and analyze formal models for schedula-

bility, reliability, and partition isolation. The toolset
can also configure an application-specific executive to
perform the specified task dispatching and schedul-
ing, message and event passing, changes between alter-
native configurations, etc. Unlike many conventional
systems that rely on a large number of run-time ser-
vice calls to configure a system by dynamically cre-
ating and linking to tasks, mailboxes, event channels,
timers, etc., our toolset builds most of this informa-
tion into an application-specific executive. There are
relatively few run-time service calls, and the effects of
these are tailored based on the specified application

hand-coded

source component
repository

HW/SW
binder

workspace

graphical
editor

textual
editor

automatically
generated

reengineered

load
image analysis results

reliability
modeler

reliability
analyzer

schedulability
modeler

schedulability
analyzer

application
builder

executive
configurer

partition isolation
modeler

partition isolation
analyzer

hybrid automata
modeler

reachability
analyzer

Figure 5: MetaH Toolset

architecture and requirements.

Our MetaH executive supports a reasonably com-
plex tasking model using preemptive fixed priority
scheduling theory[5, 6, 7]. Among the features rele-
vant to this study are period-enforced aperiodic tasks,
real-time semaphores, mechanisms for tasks to initial-
ize themselves and to recover from internal faults, and
the ability to enforce execution time limits on all these
features (time partitioning). Slack stealing in support
of aperiodic and incremental tasks is also supported,
but as we will mention later these were not modeled
or verified.

Figure 6 shows the high-level structure of the
MetaH executive. The core task scheduling operations
are implemented by module Threads, e.g. start, dis-
patch, complete. These operations implement tran-
sitions between the discrete task scheduling states,
e.g. dispatch may transition a task from the await-
ing dispatch state to the computing state. These op-
erations must take into account details such as the
task type, optional execution time enforcement, event
queueing, etc. Module Threads invokes operations
in module Time Slice, which encapsulates arithmetic
operations and tests on two execution time accumula-
tors maintained by the underlying RTOS and hard-
ware for each task: an accumulator that increases
while a task executes, and a time slice that decreases
while a task executes. Time Slice may set these vari-
ables to desired values using services provided through
the MetaH RTOS interface. If time slicing is en-
abled for a task, then a trap will be raised by the
underlying hardware and RTOS when the time slice
reaches zero. This trap is handled by one of the oper-
ations in Threads. Module Clock Handler is periodi-
cally invoked by the underlying system (it is the han-

dler for a periodic clock interrupt) and makes calls to
Threads to dispatch periodic tasks and start and stop
threads at mode changes. Modules Events, Modes
and Semaphores contain data tables and operations
to manage user-declared events, dynamic reconfigura-
tion, and semaphores.
We produced hybrid automata models for the

Threads and Time Slice modules, about 1800 lines
of code. We did not write a separate model using a
special modeling language, instead we inserted calls
to build the model into the executive code itself. For
example, in the code that implements the dispatch
operation there is logic to decide if a task can be
dispatched, assignments to change program variables,
and calls to set the time slice and execution time coun-
ters. Into this code we inserted a call to a modeling
procedure to create an edge between the correspond-
ing states of the linear hybrid automata model. The
guards for this edge are the conditional expressions
appearing in the code, and the assignments on this
edge are the assignments appearing in the code. This
provides a high degree of traceability between the im-
plementation and the model.
The generation of the hybrid automata models re-

sembled all-paths unit testing. We developed several
simple application specifications that included most
(but not all) of the tasking features. We wrote a test
driver that exercised all relevant paths in the core
scheduling modules. For each application specifica-
tion, the test driver thus triggered the generation of a
linear hybrid automata model of the possible behav-
iors of the core scheduling operations for a particular
combination of tasks and features.
The conditions we checked during reachability

analysis were that all deadlines were met whenever

POSIX or Ada95 or other kernel
MetaH RTOS interface

hardware

C
lo

ck
_H

an
dl

er Threads
Events

Modes

Semaphores

Time_Slice

Figure 6: MetaH Executive Structure

the schedulability analyzer said an application was
schedulable; no accessed variables were unconstrained
(undefined) and no invariants were violated on entry
to a region; and no two tasks were ever in a semaphore
locking state simultaneously. Assertion checks appear-
ing in the code were modeled by edges annotated with
assert False.
We also collected information about which edges

were used by some transition during reachability anal-
ysis and compared this with all the possible edges that
might be created (all instances of calls inserted into
the code to create edges). This allowed us to insure
that all modeled portions of the code were covered by
at least one reachability analysis.
A total of 14 real-valued variables and 15 discrete

states were defined to model each task. No single task
model used all 14 variables and 15 states, different
task types with different specified options used differ-
ent combinations. Figure 7 shows the simplest lin-
ear hybrid automata model we generated, a periodic
task with period and deadline of 100000us, compute
time between 0 and 90000us, recovery time between
0 and 10000us. States are also annotated with pro-
cessor scheduling priorities, which are not shown here.
The variable rates were derived from the scheduling
priorities by the analysis tool, which used preemptive
fixed priority scheduling semantics for this study. Ta-
ble 1 summarizes the complete set of applications we
analyzed. A more detailed discussion of the modeling
methods and results is provided elsewhere[30].
We discovered nine defects in the course of our ver-

ification exercise. Four of these were tool defects, two
that could cause bad configuration data to be gener-
ated and two that could cause erroneously optimistic
schedulability models to be generated. Six of these
defects could cause errors only during the handling
of application faults and recoveries, three of these six
only in the presence of multiple near-coincident faults
and recoveries. In our judgement, of the nine defects
we found, one would almost certainly have been de-
tected by moderately thorough requirements testing,
while three would have been almost impossible to de-

tect by testing due to the multiple carefully timed
events required to produce erroneous behavior. The
other five may have been detected by thorough re-
quirements testing of fault and recovery features, pro-
viding the tester thought about possible execution
timelines and arranged for tasks to consume carefully
selected amounts of time between events.

There are a number of significant limitations on the
degree of assurance provided. In our initial exercise,
we chose not to model many behaviors that could have
been modeled in a fairly straight-forward way, e.g.
mode changes, inter-processor communication proto-
col, non-preemptable executive critical sections. In
some cases different behaviors and subsystems can be
modeled and analyzed almost independently, but it is
not clear at what point the reachability analysis will
become intractable as the extent of the model grows.
Some behaviors might be more difficult to model, e.g.
slack scheduling. The MetaH processor interface, un-
derlying RTOS and hardware are unlikely to be fully
model-able for a variety of practical and technical rea-
sons. The MetaH tools were not verified, only a few
specific generated modules and reports for a few ex-
ample applications. Although our approach provides
good traceability between code and model, there is
still a very real possibility of modeling errors. The
reachability analysis tool may contain defects; we dis-
covered two in our tool in the course of this work.
The modeled code does not change from application
to application, and the analyzed applications fully ex-
ercised the code model, but to rigorously assert this
code is correct for all possible applications would re-
quire some sort of induction argument. Even if the
source code is correct, defects in the compiler, linker
or loader software could introduce defects into the ex-
ecutable image.

Nevertheless, we estimate that the effort required
for this exercise was roughly comparable to that re-
quired for traditional unit testing, but the results were
more thorough than would have been achieved using
traditional requirements testing. The method must be
used in conjunction with traditional verification tech-

0 _< _<C 90000

Initializing

Starting

Stopped

Computing

Recovering

0 _< _<C 90000

0 _< _<C 90000

0 _< _<R 10000

0 _< _<T 100000

Failed

Un(*)

Un(*)

Un(*)Un(*)

Un(*)
Un(*)

if T = 100000

if T = 100000

T:=0, C:=0 R:=0,Un(C)

T:=0,C:=0,XT:=0

XT:=0,Un(C)

XT:=
0,U

n(
C)

XT:=0,Un(R)

Awaiting_Dispatch
0 _< _<T 100000

_<T 100000assert

_<T 100000assert

Figure 7: Generated Hybrid Automata Model for a Simple Periodic Task

niques such as testing, but it is at least intuitively
reasonably easy to distinguish requirements that will
be verified using hybrid automata from requirements
that must be verified using other techniques.

6 Future Work
Our experience leads us to believe that linear hy-

brid automata are very powerful and well-suited for
this domain. We were able to achieve one of our goals,
the modeling and verification of a piece of real-world
real-time software, with a number of limitations. We
do not believe we have achieved the other goal yet,
modeling and schedulability analysis for complex dis-
tributed systems of real-world size. However, there are
a number of potential future developments that might
reduce the verification limitations and provide useful
schedulability analysis capabilities.
It should be possible to use the set of reachable

regions produced by the analysis tool to automatically
generate tests. This could significantly reduce the cost
and increase the quality of requirements testing (which
might still be required by the powers-that-be). Such
tests could also detect defects that could not be found
by model analysis, such as defects in the compiler,
linker, loader, RTOS or hardware. One of the issues
that must be confronted is the ease of constructing,
running and observing the results of tests; for example,
in theory one might encounter transitions in the model
that occur only when two values are extremely close,
which could be practically impossible to do in a test.
Another issue is that such tests would not take into

account the internal logic of unmodeled modules such
as the RTOS; a systematic method for testing multiple
points within each reachable polyhedron might help
address this.
There are a number of potentially useful improve-

ments in analysis methods and tools. Approximation
and partial order methods might significantly increase
the size of the model that could be analyzed[16, 19,
15, 29]. Preprocessing models to modify numeric pa-
rameters in certain ways can result in much more eas-
ily solved models[29]. It is possible to apply theo-
rem proving methods to linear hybrid automata[21],
and some work has been done on dense-time process
algebras[10, 14]. Decomposition and induction meth-
ods currently being explored for discrete state models
might be extensible to linear hybrid automata. There
are a number of possible ways to visualize and navigate
the reachable region space that would be of practical
assistance during model development and debugging
and during reviews. Concise APIs and support for in-
line modeling could reduce both the modeling effort
and the number of modeling defects.
Changes will inevitably be required to the design,

implementation and verification processes to make
good use of these methods. Much of the benefit of
other formal methods has been due to subsequent
changes in development methods that resulted in more
verifiable and defect-free specifications, designs and
code in the first place. An important and not com-
pletely technical question is how verification processes
might be changed to beneficially use these methods.

Description Discrete Distinct Sparc Ultra-2
States Polyhedra CPU Seconds

one periodic task 7 7 0

one periodic task, enforced execution time limits 7 10 0

one periodic task, enforced execution time limits, one semaphore 8 29 15

one period-enforced aperiodic task 9 18 0

one period-enforced aperiodic task, enforced execution time limits 9 27 2

one period-enforced aperiodic task, enforced execution time limits, one
semaphore

11 124 125

two periodic tasks 36 60 3

two periodic tasks, enforced execution time limits 36 108 24

two periodic tasks, one with period transformed into two pieces, 41 97 10

two periodic tasks, one shared semaphore 48 118 36

two periodic tasks, one with period transformed into two pieces, enforced
execution time limits

41 174 87

two periodic tasks, one with period transformed into four pieces, enforced
execution time limits, recovery limit greater than compute limit

40 334 103

two tasks, one periodic and one period-enforced aperiodic 44 623 115

two periodic tasks, one with period transformed into four pieces, enforced
execution time limits

41 351 170

two tasks, one periodic and one period-enforced aperiodic, enforced ex-
ecution time limits

44 425 184

two tasks, one periodic and one period-enforced aperiodic, one shared
semaphore

70 638 840

two periodic tasks, one with period transformed into two pieces, enforced
execution time limits, one shared semaphore

55 963 5658

Table 1: Modeled Applications

What evidence would be required, for example, to con-
vince a development organization or regulatory au-
thority to replace selected existing verification activ-
ities with modeling and analysis activities, or to add
modeling and analysis to current verification activi-
ties?

References
[1] MetaH User’s Guide, Honeywell Technology Cen-

ter, 3660 Technology Drive, Minneapolis, MN,
www.htc.honeywell.com/metah.

[2] K. Altisen, G. GöBler, A. Pnueli, J. Sifakis, S.
Tripakis and S. Yovine, “A Framework for Sched-
uler Synthesis,” Real-Time Systems Symposium,
December 1999.

[3] Rajeev Alur, Tomás Feder and Thomas A. Hen-
zinger, “The Benefits of Relaxing Punctuality,”
Proceedings of the Tenth Annual ACm Symposium
on Principles of Distributed Computing, Montreal,
Quebec, August 19-21, 1991.

[4] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin
Ho, “Automatic Symbolic Verification of Embed-
ded Systems,” IEEE Transactions on Software En-
gineering, vol. 22, no. 3, March 1996, pp 181-201.

[5] Pam Binns, “Scheduling Slack in MetaH,” Real-
Time Systems Symposium, work-in-progress ses-
sion, December 1996.

[6] Pam Binns,
“Incremental Rate Monotonic Scheduling for Im-
proved Control System Performance,” Real-Time
Applications Symposium, 1997.

[7] Pam Binns and Steve Vestal, “Message Passing
in MetaH using Precedence-Constrained Multi-
Criticality Preemptive Fixed Priority Scheduling,”
submitted Real-Time Applications Symposium.

[8] Johan Bengtsson and Fredrik Larsson, UPPAAL,
A Tool for Automatic Verification of Real-Time
Systems, DoCS 96/97, Department of Computer
Science, Uppsala University, January 15, 1996.

[9] B. A. Brandin and W. M. Wonham, “Supervisory
Control of Timed Discrete-Event Systems,” IEEE
Transitions on Automatic Control, v39, n2, Febru-
ary 1994.

[10] Patrice Brémond-Grégoire and Insup Lee, “A
Process Algebra of Communicating Shared Re-
sources with Dense Time and Priorities,” Univer-
sity of Pennsylvania Department of Computer Sci-
ence Technical Report MS-CIS-95-08, June 1996.

[11] S. Campos, E. Clarke, W. Marrero, M. Minea and
H. Hiraishi, “Computing Quantitative Character-
istics of Finite-State Real-Time Systems,” Real-
Time Systems Symposium, December 1994.

[12] David L. Dill, “Timing Assumptions and Verifica-
tion of Finite-State Concurrent Systems,” Interna-
tional Workshop on Automatic Verification Meth-
ods for Finite State Systems, Grenoble, France,
June 12-14, 1989, also in Lecture Notes in Com-
puter Science 407, J. Sifakis (Ed.), Springer-
Verlag, pp 197-212.

[13] Andre N. Fredette and Rance Cleaveland,
“RSTL: A Language for Real-Time Schedulability
Analysis,” Proceedings of the Real-Time Systems
Symposium, December 1993.

[14] Andre N. Fredette, A Generalized Approach to
the Analysis of Real-Time Computer Systems,
Ph.D. Dissertation, North Carolina State Univer-
sity, March 1993.

[15] Nicolas Halbwachs, Pascal Raymond and Yann-
Eric Proy, “Verification of Linear Hybrid Systems
by Means of Convex Approximations,” Workshop
on Verification and Control of Hybrid Systems,
Piscataway, NJ, October 1995.

[16] Nicolas Halbwachs, Yann-Erik Proy and Patrick
Roumanoff, “Verification of Real-Time Systems
using Linear Relation Analysis,” Formal Methods
in System Design, 11(2):157-185, August 1997.

[17] Thomas A. Henzinger, Peter W. Kopke, Anuj
Puri and Pravin Varaiya, “What’s Decideable
About Hybrid Automata?” Proceedings of the 27th
Annual ACM Symposium on Theory of Comput-
ing, 1995.

[18] Thomas A. Henzinger, Pei-Hsin Ho and Howard
Wong-Toi, “HyTech: The Next Generation,” Real-
Time Systems Symposium, December 1995.

[19] Thomas A. Henzinger and Pei-Hsin Ho, “A Note
On Abstract Interpretation Strategies for Hybrid
Automata,” Hybrid Systems II, also Lecture Notes
in Computer Science 999, Springer-Verlag, 1995.

[20] Thomas A. Henzinger, Pei-Hsin Ho and Howard
Wong-Toi, “A User Guide to HyTech,” University
of California at Berkeley,
www.eecs.berkeley.edu/~tah/HyTech

[21] Thomas A. Henzinger and Vlad Rusu, “Reach-
ability Verification for Hybrid Automata,” Pro-
ceedings of the First International Workshop on
Hybrid Systems: Computation and Control, also
Lecture Notes in Computer 1386, Springer-Verlag,
1998.

[22] Y. Kesten, A. Pnueli, J. Sifakis and S. Yovine,
“Integration Graphs: A Class of Decideable Hy-
brid Systems,” in R. L. Grossman, A. Nerode, A.
P. Ravn and H. Rischel, editors, Hybrid Systems,
Lecture Notes in Computer Science 736, Springer-
Verlag, 1993.

[23] Insup Lee, Patrice Brémond-Grégoire and
Richard Gerber, “A Process Algebraic Approach
to the Specification and Analysis of Resource-
Bound Real-Time Systems,” Department of Com-
puter Science, University of Pennsylvania.

[24] Bruce Lewis, “Software Portability Gains Real-
ized with MetaH, an Avionics Architecture De-
scription Language,” 18th Digital Avionics Sys-
tems Conference, St. Louis, MO, October 24-29,
1999.

[25] Anum Puri and Pravin Varaiya, “Decidability of
Hybrid Systems with Rectangular Differential In-
clusions,” Department of Electrical Engineering
and Computer Science, University of California,
Berkeley, CA.

[26] Peter J. G. Ramadge and W. Murray Wonham,
“The Control of Discrete Event Systems,” Proceed-
ings of the IEEE, v77, n1, January 1989.

[27] Steve Vestal, “An Architectural Approach for In-
tegrating Real-Time Systems,” Workshop on Lan-
guages, Compilers and Tools for Real-Time Sys-
tems, June 1997.

[28] Steve Vestal, “Linear Hybrid Automata Mod-
els of Real-Time Scheduling and Allocation in
Distributed Heterogeneous Systems,” Honeywell
Technology Center, 3660 Technology Drive, Min-
neapolis, MN 55418, 1999.

[29] Steve Vestal, “A New Linear Hybrid Automata
Reachability Procedure,” Honeywell Technology
Center, 3660 Technology Drive, Minneapolis, MN
55418, 1999.

[30] Steve Vestal, “Formal Verification of the MetaH
Executive Using Linear Hybrid Automata,” Hon-
eywell Technology Center, Minneapolis, MN
55418, December 1999.

[31] Jin Yang, Aloysius K. Mok and Farn Wang,
“Symbolic Model Checking for Event-Driven Real-
Time Systems,” ACM Transactions on Program-
ming Languages and Systems, v19, n2, March
1997.

Orpheus: A Self-Checking Translation Tool Arrangement

for Flight Critical Hardware Development

David Greve� Matthew Wilding� Mark Bickfordy David Guaspariy

Abstract

We describe Orpheus, our vision for a de-
velopment and veri�cation environment for

ight critical hardware devices. Orpheus pro-
vides an arrangement of translation tools that
are self-checking and that integrate synthe-
sis, high-speed simulation, and formal anal-
ysis. Implementation of the Orpheus ar-
chitecture would allow tight integration of
these formerly distinct activities and facil-
itate the use of formal analysis in
ight-
critical system certi�cation. Further,
exibil-
ity in the choice of design representation pro-
vided by Orpheus would support both current
design practice and hardware/software code-
sign. This paper describes the notion of self-
checking tools, the Orpheus tool architecture,
and how commercially-available tools could be
used to implement such a system.

1 Current Practice

1.1 Background

Certi�cation of
ight critical systems is to-
day a labor-intensive, manual process. Veri�-
cation and certi�cation of
ight critical soft-
ware and application-speci�c integrated cir-
cuits (ASICs) require an almost heroic e�ort

�Rockwell Collins, Inc. Advanced Technology Cen-
ter, Cedar Rapids IA

yOdyssey Research Associates, Ithaca NY

of intense inspections and process documenta-
tion. The complexity of systems and devices
will increase, because increases in cockpit au-
tomation and application integration o�er im-
portant safety bene�ts, and because astonish-
ing improvements in digital computing tech-
nology can potentially improve performance
and decrease cost. The current approach to
veri�cation and certi�cation may not be ade-
quate in the face of this increased complexity.
In order to reap fully the safety bene�ts of
these technological advances we must develop
new methods for veri�cation and certi�cation
of
ight critical devices.
Several recent developments permit a supe-

rior approach to veri�cation and certi�cation.
First,
ight critical ASICs can now be de-
veloped using standard hardware description
languages (HDLs) because recent advances in
equivalency-checking tools provide an inde-
pendent check that synthesis preserves func-
tional correctness. Second, theorem proving
tools have emerged that enable mechanical
formal analysis of device properties. Third,
translation tools are emerging that allow the
integration of mathematical analysis into the
conventional fabrication/simulation-based de-
velopment environment.

1.2 Flight Critical HDL Use

Modern hardware devices are typically devel-
oped using one of several hardware description
languages (HDLs), such as Verilog or VHDL.

HDL Model

netlist

CIF

LVS

equiv. check

place & route

synthesis

Figure 1: Fabrication toolsets for
ight critical
HDL provide self-checking

In the area of
ight critical hardware, how-
ever, this has been the case only within the last
few years. The delay in adopting these design
techniques has been a result of concerns about
the reliability of the process by which an im-
plementation expressed in an HDL is used to
fabricate the actual device. The complexity of
HDLs means that tools that manipulate HDL
designs are complex. As a result, the move to-
ward using standard HDLs was hindered be-
cause requirements could not be traced to the
device without trusting the synthesis tools and
supporting libraries.

Fortunately, tools now exist that allow
highly-dependable HDL fabrication. Figure 1
shows how 4 fabrication-oriented tools can be
used to make the fabrication process immune
from corruption by a fault in any single tool.
A synthesis tool converts an HDL design into
a netlist, and a place-and-route tool converts
the netlist into CIF data that can be fabri-
cated. The CIF data is checked against the
netlist using an LVS (layout-versus-schematic)
tool. The netlist is checked against the VHDL
model using equivalence-checking tools.

The dependability of the connection be-
tween the design and physical device a�orded
by an independent tool chain as presented in
Figure 1 has changed how
ight critical hard-
ware is developed. Incorporation of this in-

FABRICATION HIGH-SPEED SIMULATION

DESIGNER

HLL device designsHDL device designs

HLL ModelHDL Model

Figure 2: Designers typically build two device
models

novation into the development process has al-
lowed developers of airborne hardware to ben-
e�t from modern design practices such as syn-
thesis and optimization.

1.3 Device simulators

It is commonly the case that a high-speed sim-
ulator is developed in parallel with an HDL
model of a device. There are several reasons
for this.

� Execution of the VHDL model is often too
slow to support testing activities. This is
especially true for large test suites such as
are typical for regression testing.

� Software or other parts of the system that
rely on the device must be developed be-
fore the HDL model is complete.

High performance is critical for device sim-
ulators, so simulators of this type are typically
constructed using a high-level language (HLL)
such as C or C++ for which there are compil-
ers that generate e�cient code1.

1Multiple simulators are routinely built during de-
vice development. For example, a microcoded mi-
croprocessor's simulators would typically include both
an instruction-level simulator and a microarchitecture
simulator. The device simulator we are describing here
is a low-level, cycle-accurate simulator.

The required functionality of complex com-
putational devices is typically implemented us-
ing a combination of hardware and software,
and an early design decision in the develop-
ment of these systems is where to draw the
line between these two kinds of implementa-
tions. The distinction between hardware and
software in implementions adds complexity to
these systems, since it requires that an inter-
face be de�ned. Furthermore, this interface
between hardware and software can change
during a design cycle as implementation is-
sues make clearer the tradeo�s between im-
plementing various functions in hardware or
in software. It would therefore be desirable
to develop hardware and software using the
same languages and tools, and delay decisions
about the exact form in which they will be im-
plemented. Designing could be done, for ex-
ample, using C. Functions whose design will
ultimately appear in hardware can be fabri-
cated using the HDL representation. This has
the potential to simplify development e�orts
since no hardware/software interface need be
considered during development.

Figure 2 shows the artifacts resulting from
current practice: two models that are expected
to be identical in substance but that are writ-
ten in di�erent languages. This is typical of
the current state-of-the-art design practice for
airborne hardware devices.

2 Formal Analysis

Current certi�cation processes provide some
hard-to-quantify assurance that critical air-
borne hardware devices meet their require-
ments. Teams of inspectors \walk through" a
design, assessing whether the implementation
indeed meets the stated requirements. This
process generates a paper trail that documents
the level of e�ort of the inspectors and ensures
that all relevant parts of the design have in

fact been examined against the requirements.
For complex designs this type of examination
is very labor-intensive, but there is currently
no viable alternative. Even so, the quality of
the device is, to a large extent, measured in-
directly via the inspection process.
Several aspects of the current process for de-

veloping and certifying safety-critical devices
are not ideal. It would be better if certi�ca-
tion practice measured the quality of the de-
vice directly, rather than measuring the e�ort
applied to the veri�cation. Further, as the
trend is toward using more complex devices for
critical airborne activities, current veri�cation
and certi�cation threaten to become increas-
ingly inadequate. It has long been hoped that
mathematical reasoning | rather than careful
documentation of the e�orts of inspectors |
could ferret out design
aws more e�ectively
than manual inspections. The potential for
establishing by direct, formal reasoning that
a device meets its requirements has obvious
appeal, and is increasingly recognized as a vi-
able veri�cation methodology by certi�cation
authorities.
Mathematical proofs about computing de-

vices tend to be very complex and detail-
laden, which makes them impractical to de-
velop or check by hand. There has been con-
siderable research applied to the development
of automated theorem provers that are ca-
pable of checking and/or generating mathe-
matical proofs. Leading tools include ACL2,
HOL, and PVS, and each is increasingly �nd-
ing application in industrial settings where
safety or wide product distribution makes es-
tablishing design correctness imperative. Var-
ious veri�cation projects have used theorem
provers to analyze computer system models
[1, 2, 4, 6, 8, 13, 14, 17]. A dramatic re-
cent example of the possibilities of applying
formal analysis to computing systems is the
ACL2-checked veri�cation of AMD's Athlon
(formally \K7")
oating-point operations [16].

FORMAL ANALYSIS

designs
HLL device

FABRICATION

DESIGNER

formal model
device designs

HDL device designs

HIGH-SPEED SIMULATION

HDL Model Formal ModelHLL Model

Figure 3: Formal analysis requires designers
build yet another model.

The increased industrial use of automated
theorem provers results from improvements in
the tools themselves and increased availability
of reusable libraries of results [7, 9, 16]. Al-
though we expect these tools will be increas-
ingly common, poor integration with other as-
pects of the design environment remains an
impediment to their adoption [12]. We be-
lieve that formal analysis will become perva-
sive only when the tools are properly integrated

with other aspects of the design environment.

Figure 3 identi�es the artifacts resulting
from a process augmented to support formal
veri�cation: three models of the same device
written in three di�erent languages each sup-
porting its own development or veri�cation ac-
tivity. In a recent e�ort Rockwell Collins de-
veloped three separate device models | one
each for fabrication, simulation, and formal
analysis | in order to bene�t from each of
these activities [11]. However, the high cost of
building and maintaining models alone makes
this approach unsustainable. Even more trou-
blesome is that the multiple models might be
inconsistent with each other, so a property
proved about the formal model or the observ-
able behavior of the simulator used to develop
other parts of the system might not be re-

ected in the actual fabricated device.

HDL device designs

device designs

HIGH-SPEED SIMULATION FORMAL ANALYSISFABRICATION

DESIGNER

formal model

HDL Model HLL Model

Executable Formal

Formal Model

Model Techniques

Figure 4: Executable formal models reduce the
number of models

3 Orpheus

We propose a comprehensive development
and veri�cation environment for safety-critical
hardware devices called Orpheus. In Greek
mythology, Orpheus subdues the fearsome,
three-headed, dog-like Cerebus. As we
have seen, veri�cation and certi�cation of
increasingly-complex safety-critical devices re-
quires us to overcome another three-headed
challenge: to support device fabrication, high-
speed simulation, and formal analysis in an in-
tegrated way. Orpheus does so without requir-
ing the development of multiple models that
are expensive and possibly inconsistent. The
Orpheus approach can be integrated into cur-
rent approaches for
ight critical device devel-
opment. The Orpheus tools are self-checking,
so as to guarantee that no single translation
tool can introduce an error into the veri�ca-
tion process. The approach allows
exibility
of design paradigm: it supports HDL devel-
opment, hardware/software codesign, and de-
signs derived from formal speci�cation.

3.1 Reducing Three Models to

Two

In part to address the issue of multiple distinct
models, Rockwell Collins recently developed
techniques that allow formal models written
in a particular style in the ACL2 logic to be

compiled into C for use as a high-speed simu-
lator [10, 18]. This work e�ectively combines
the formal and simulator models, thereby re-
ducing the number of models from three to
two. Figure 4 shows the impact of this inno-
vation. The integration increases con�dence
in the validity of the uni�ed model, since the
same model is used both as a simulator and
as a target of formal analysis. This impor-
tant capability|high speed execution of for-
mal logic de�nitions|has since been added to
two theorem proving systems:

� A recent PVS extension provides a trans-
lator from PVS functions into Common
Lisp. Rockwell Collins' preliminary tests
using a version of the benchmark from [18]
in PVS 2.3 [15] indicate that execution
speeds are within an order of magnitude
of the speed of a model written conven-
tionally in C. We expect that PVS will
ultimately develop the capability to inte-
grate models expressed in the PVS logic
into other tools.

� Single-threaded objects have been added
to ACL2 2.4 and provide for high-
speed execution of certain de�nitions [5].
Single-threaded objects are an extension
of the notion of ACL2 \state" that per-
mits the introduction of user-de�ned state
elements. ACL2 enforces syntactic re-
strictions on the use of single-threaded
objects to guarantee that the optimiza-
tions are legitimate. Rockwell Collins'
experiments suggest that complex de-
vice models can be expressed despite the
syntactic restrictions enforced on single-
threaded objects, indicating that these
restrictions do not make the ACL2 lan-
guage impractical. Rockwell Collins has
recently shown that ACL2 code can be
integrated with other tools [18].

HIGH-SPEED SIMULATION FORMAL ANALYSISFABRICATION

DESIGNER

formal model
device designs

HDL Model HLL Model

Model Techniques
Executable Formal

HLL to HDL translator

Formal Model

Figure 5: Formal models could provide a sin-
gle, uni�ed model

3.2 Reducing Two Models to

One

An approach has recently emerged that poten-
tially allows the integration of high-speed sim-
ulation models and device designs written in
HDL. Several commercial tools are now avail-
able to translate high-level language (HLL)
models into HDL models suitable for fabrica-
tion. Among the leading tools of this type
are CynApps' C++-to-Verilog converter and
C level's C-to-HDL converter, which gener-
ates either Verilog or VHDL. These tools pro-
mote an HLL-based design methodology that
integrates simulation and fabrication. The ex-
istence of such tools and the emerging push
for system level design and hardware/software
codesign practices suggest that the commer-
cial world will continue to develop and improve
these tools.

The ability to compile a formal model into a
simulation model, as described above, reduces
the three models to two. Figure 5 suggests
an obvious way to reduce the two models to
one, by compiling the simulation model into
a fabrication model expressed in an HDL. We
discuss in Section 3.4 our initial testing of one
of these tools, C level's C-to-HDL tool, and
this experience suggests that Orpheus may be
a realistic path for some applications.

FORMAL ANALYSIS
HIGH-SPEED SIMULATION

FABRICATION

 FORMAT
DESIGNER CHOOSES

Formal Model

Model Techniques
Executable Formal

HDL equivalency
checking

HLL ModelHDL Model

HLL to HDL translator

model generator

Figure 6: The Orpheus translation circle uses
a single model to combine fabrication, high-
speed simulation, and formal analysis

3.3 Closing the Loop with Or-

pheus

Although the tools outlined above allow the
translation of high-level artifacts to HDL, and
while such a process supports methodology
changes that could reduce design errors, there
are problems with using these tools for
ight
critical applications. First, the process out-
lined above requires that device development
be accomplished by constructing a model or
speci�cation in formal logic. This is impracti-
cal, as hardware development is most appro-
priately done in an HDL or, in the case of
hardware/software codesign, in an HLL.
The second issue is tracibility. Speci�cally,

there must be a way to trace the requirements
to the device through the tools. This issue is
analogous to the one discussed in Section 1.2
that has until recently bedeviled those who
wished to use an HDL for
ight critical hard-
ware design. Note that, unlike the fabrica-
tion tools of Figure 1, the compilation tools
described in Figure 5 are not arranged to be
self-checking. As a result the two compilers
employed in this process would have to be
thoroughly vetted before they could be used
in a process for developing
ight critical de-
vices, which is problematic.

The Orpheus system addresses these two
important issues by adding to the chain an-

other tool, amodel-generator, that converts an
HDL design into a formal model. Figure 6
shows how the Orpheus tools are arranged.
The translators form a circle in which a rep-
resentation is converted in turn into each of
the other representations and ultimately back
into its original representation language. For
example, a device model could be developed in
an HDL that supports fabrication. The model-
generator then creates a formal model that can
be analyzed using a theorem prover. Using
executable formal models techniques, the for-
mal model is translated into an HLL model
that supports high-speed simulation. Finally,
the HLL model is translated back into HDL,
and shown to be equivalent to the initial HDL
model using an equivalency checker of the kind
used in the HDL fabrication process.
There is only a single model, yet three

distinct device representations are involved
to support the three di�erent uses: fabrica-
tion, high-speed simulation, and formal analy-
sis. These three activities support each other,
both for model validation and in the fabrica-
tion/veri�cation process, because they involve
the single model in di�erent ways.
As previously discussed, although the nec-

essary formats can be generated without com-
pleting the circle of translations, the question
of translation correctness remains open. The
certi�cation of
ight critical devices must ad-
dress this issue. If the circle is completed, and
the initial design and �nal design are shown
equivalent, then each representation of the de-
sign is guaranteed correct so long as at most
one of the tools has erred. Much as the fab-
rication tools diagrammed in Figure 1 are ar-
ranged to be self-checking, so too are the Or-
pheus translation tools. Even if more than one
tool errs, the probability of catching the error
is still very high since otherwise the multiple
mistaken tools would have to fail in ways that
mask each other's errors.
This kind of self-checking tool arrangement

provides a very strong argument for the ab-
sence of translator-induced errors, and makes
this kind of development practical just as mod-
ern self-checking fabrication tools permit HDL
use in safety-critical devices. Orpheus there-
fore provides a framework for tight and highly
reliable integration of formal analysis, simula-
tion, and fabrication.

3.4 Orpheus Translation Circle

Example

To assess the technical feasibility of the Or-
pheus approach, we have done a small exper-
iment with using current versions of Orpheus
components in a manner consistent with the
tool arrangement of Figure 6.

As discussed previously, one of the advan-
tages of Orpheus is that it allows a developer
to use any of the representations for his de-
vice. We might expect VHDL to be the lan-
guage of choice for hardware designers, while C
might be preferred for hardware/software co-
design. This experiment begins from a formal
ACL2 model of an interrupt controller that
forms part of a proprietary device developed
by Rockwell Collins. We will navigate around
the Orpheus circle to generate a simulation
model, a VHDL model, and a second formal
model. We have already discussed the bene�ts
accruing from these di�erent representations.
The point of the experiment is to observe that
the two formal models have su�cient similari-
ties in structure, complexity, and level of detail
to indicate that a proof of their equivalence |
and therefore a self-check of all the transla-
tions | is feasible.

The Common Lisp model of this device
uses a macro package developed by Rockwell
Collins to ease modeling in Common Lisp.
The line

(ST. SYNC1 = (& (ST. SYNC0) (HxFFDF)))

expresses the following behavioral detail:
SYNC1 is an element of the machine state,
a register. It is updated each clock tick with
the result of applying a constant bit-mask to
another state variable, SYNC0.

We also wish to simulate this device. We
might choose merely to execute the Common
Lisp code. However, there would be two dis-
advantages to that approach. First, it would
be slow. Our experiments with running ap-
plicative Common Lisp models indicates that
these models execute roughly 100 times slower
than equivalent C language models [18]. Sec-
ond, it is di�cult to integrate raw, applicative
Common Lisp into other tools.

Rockwell Collins has been working on this
challenge for two years and, as described
above, has sped applicative Common Lisp ex-
ecution and integrated this code into other ap-
plications. This approach, broadly called \ex-
ecutable formal models," is outlined in two
recent publications [10, 18]. Using these op-
timizations and a Lisp compiler, we gener-
ate a C program that executes at roughly the
same speed as hand-coded C, and can be inte-
grated with other software. Rockwell Collins
in the past has integrated code of this type
into various simulation and development envi-
ronments [18].

We apply this technique to the example
above. The line of the resulting C code that
corresponds to the given line of Common Lisp
reads as follows:

V12= (D.SYNC1 = ((((((V11)), Q.SYNC0)) &

((-(33))))),((V11)));

We also wish to fabricate this device. To
do so we have applied a C-to-HDL tool (devel-
oped by C level) to convert the auto-generated
C program produced into VHDL. Many trans-
formations are done, such as converting vari-
ables in the C code that maintain state into
registers in the VHDL. The line of C code

shown above translates into the following line
of VHDL:

D_var (SYNC1_2'range) := (Q_var (SYNC0_2'range)

and "1111111111011111");

Ultimately, we wish to fabricate devices
from VHDL using the approach outlined in
Figure 1. We applied a Synopsys VHDL syn-
thesizer to this VHDL code, and the result ap-
pears correct. As described in Section 1.2, it is
this synthesis step from VHDL that current-
available tools such as the Chrysalis equiva-
lence checker can verify.
We really want to check much more than

this �nal step. We want to verify that the syn-
thesized design implements the formal model
with which we began, so we complete the cir-
cle with a model-generator developed by ORA
[2, 3]. This tool currently generates a de-
scription in �rst-order logic, rather than ACL2
code, and there are other modest problems
related to di�erences between the VHDL li-
braries assumed by the C level tool and the
libraries assumed by the ORA tool. How-
ever, with minor manual changes to the VHDL
needed to overcome the library issue, we were
able to use the model-generator to construct a
speci�cation in �rst-order logic. In this nota-
tion, the value assigned to SYNC1 is:

(slice(s.q, 79, 64) and

flip(shift(vector("1111111111011111"), 78))))

The \slice" expression denotes the 16-bit
slice of vector q that, by de�nition, represents
SYNC0. The \flip" expression is of course the
mask. (It is \
ipped" because q has been de-
�ned to run down from 79 to 64 rather than
up from 64 to 79.) Although it is expressed
in a di�erent syntax (i.e. Larch/VHDL rather
than ACL2) the generated formal model corre-
sponds term-by-term to the original Common
Lisp (ACL2) model.
Sophisticated digital design, simulation and

test-generation, and machine-checked formal

CHOOSES FORMAT

HDL Model

CIF

LVS

equiv. check

place & route

HLL Model

Formal Model

FABRICATION

HIGH-SPEED SIMULATION

synthesis

Executable Formal
Models

FORMAL ANALYSIS

equiv. check

HLL-to-HDL converter

model generator

netlist

DESIGNER

Figure 7: Orpheus Supports and Integrates
Each Design Activity

analysis, each individually pose technical chal-
lenges that are not solved by using the Or-
pheus approach. However, Orpheus provides
a framework for integrating these separate do-
mains, and we believe that the simple exper-
iment reported here indicates that this novel
technical approach can succeed.

4 Summary

Current veri�cation and certi�cation of de-
vices appears increasingly inadequate in the
face of increasing complexity of
ight critical
systems. Figure 7 summarizes the Orpheus
approach. Orpheus supports hardware de-
velopment and hardware/software codevelop-
ment in a way that allows for formal analysis,
fabrication, and high-speed simulation. The
Orpheus tools are self-checking, just as mod-
ern HDL fabrication tools are, to insure their
reliability. Orpheus supports a veri�cation ap-
proach that forms the basis of a superior certi-
�cation approach that provides a way to meet
this looming challenge.

References

[1] William R. Bevier, Warren A. Hunt Jr.,
J Strother Moore, and William D. Young. An ap-
proach to systems veri�cation. Journal of Auto-

mated Reasoning, 5(4):411{428, December 1989.

[2] Mark Bickford. Technical Information Report -
Final Report for Formal Veri�cation of VHDL De-
sign. Technical Report TM-96-0025, ORA, July
1996. Delivered to Rome Lab under contract
F30602-94-C-0136.

[3] Mark Bickford and Damir Jamsek. Formal spec-
i�cation and veri�cation of VHDL. In Man-
dayam Srivas and Albert Camilleri, editors, For-
mal Methods in Computer-Aided Design { FM-

CAD, volume 1166 of Lecture Notes in Computer

Science. Springer-Verlag, 1996.

[4] Robert S. Boyer and J Strother Moore. Mecha-
nized formal reasoning about programs and com-
puting machines. In R. Vero�, editor, Automated
Reasoning and Its Applications: Essays in Honor

of Larry Wos. MIT Press, 1996.

[5] Robert S. Boyer and J Strother Moore. Single-
threaded objects in ACL2, 1999. http://-

www.cs.utexas.edu/users/moore.

[6] Robert S. Boyer and Yuan Yu. Automated proofs
of object code for a widely used microproces-
sor. Journal of the ACM, 43(1):166{192, January
1996.

[7] Bishop Brock. ACL2 integer hardware speci�ca-
tion (IHS) books, 1998. Standard ACL2 distribu-
tion at http://www.cs.utexas.edu/users/moore.

[8] Bishop Brock, Matt Kaufmann, and J Strother
Moore. ACL2 theorems about commercial mi-
croprocessors. In Mandayam Srivas and Albert
Camilleri, editors, Formal Methods in Computer-

Aided Design { FMCAD, volume 1166 of Lec-
ture Notes in Computer Science. Springer-Verlag,
1996.

[9] Ricky Butler, Paul Miner, et al. PVS libraries
for arithmetic, sets, and graphs. http://-

shemesh.larc.nasa.gov/fm.

[10] David Greve, Matthew Wilding, and David
Hardin. High-speed, analyzable simulators.
In Computer-Aided Reasoning: ACL2 Case

Studies. Kluwer Academic Publishers, to ap-
pear. http://www.pobox.com/users/hokie/-

docs/hsas.ps.

[11] David A. Greve. Symbolic simulation of the JEM1
microprocessor. In Formal Methods in Computer-

Aided Design { FMCAD, Lecture Notes in Com-
puter Science. Springer-Verlag, 1998.

[12] David Hardin, Matthew Wilding, and David
Greve. Transforming the theorem prover into a
digital design tool: From concept car to o�-road
vehicle. In Alan J. Hu and Moshe Y. Vardi, ed-
itors, Computer-Aided Veri�cation { CAV '98,
volume 1427 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, 1998. http://pobox.com/-
users/hokie/docs/concept.ps.

[13] Steven P. Miller, David A. Greve, Matthew M.
Wilding, and Mandayam Srivas. Formal veri�-
cation of the AAMP-FV microcode. Technical
report, Rockwell Collins, Inc., Cedar Rapids, IA,
1996.

[14] Steven P. Miller and Mandayam Srivas. For-
mal veri�cation of the AAMP5 microprocessor: A
case study in the industrial use of formal meth-
ods. In WIFT'95: Workshop on Industrial-

Strength Formal Speci�cation Techniques, Boca
Raton, FL, 1995. IEEE Computer Society.

[15] S. Owre, N. Shankar, J. M. Rushby, and D. W. J.
Stringer-Calvert. PVS System Guide. Computer
Science Laboratory, SRI International, Menlo
Park, CA, September 1998.

[16] David M. Russino�. A mechanically checked
proof of IEEE compliance of the
oating point
multiplication, division, and square root algo-
rithms of the AMD-K7 processor, January 28
1998. http://www.onr.com/user/russ/david.

[17] Matthew Wilding. A mechanically veri�ed ap-
plication for a mechanically veri�ed environ-
ment. In Costas Courcoubetis, editor, Computer-
Aided Veri�cation { CAV '93, volume 697 of
Lecture Notes in Computer Science. Springer-
Verlag, 1993. ftp://ftp.cs.utexas.edu/pub/-

boyer/nqthm/wilding-cav93.ps.

[18] Matthew Wilding, David Greve, and David
Hardin. E�cient simulation of formal processor
models. Formal Methods in System Design, to ap-
pear. Draft TR available as http://pobox.com/-
users/hokie/docs/efm.ps.

FormalCORE™ PCI/32
A Formally Verified VHDL Synthesizable PCI Core

Bhaskar Bose, M. Esen Tuna and Ingo Cyliax
Derivation Systems, Inc.

Carlsbad, California, USA.
www.derivation.com

Abstract

This paper describes an integrated design methodology for the use of formal methods with existing tools in the
context of developing FormalCORE PCI/32. The primary goal is to develop technology for the design and
verification of formally verified IP cores that includes all the features, documentation, and support necessary to
insure integration into designs with the high degree of reliability provided by the application of formal
methods. Validation techniques used in developing these cores include formal specification, formal synthesis,
simulation, hardware emulation, theorem proving, and model checking.

1 Introduction

The PCI[6,7] Local Bus is a high performance, 32-bit or 64-bit bus with multiplexed address and data lines.
The bus is designed for use as a high-speed interconnect mechanism between peripheral components and
processor/memory subsystems.

FormalCORE™ PCI/32 is a synthesizable VHDL[4] 32-bit, 33MHz PCI interface core targeted to
programmable hardware. The VHDL description is formally synthesized using our DRS[1,2] formal synthesis
system and formally verified using the Verysys PropertyProver model checker to be compliant with the v2.1
PCI specification.

The overall goal of the project is increased assurance by using a variety of formal methods technologies in
concert to attack a practical problem. We have developed the methodology for the design and validation of
VHDL cores with a variety of tools that can serve as documentation, and increase assurance. In meeting the
primary goal of the project we achieve a reduction in the development time as well. Once the design flow was
in place, correcting specification bugs and rechecking the properties was a routine task rather than a challenge.

A key benefit to this approach is that it allows for the deployment of formal methods into current engineering
practice via pre-designed, pre-verified components that meet the stringent reliability and safety requirements
that are necessary in avionics and space applications. These components can then be integrated into larger
designs providing the building blocks for complex designs and the foundation for design reuse.

In developing the FormalCORE technology we rely heavily on both formal and traditional design and
verification tools. We recognize at the early stages of planning that a comprehensive approach to the
integration of formal verification techniques to an existing design flow is critical to the success of the
technology. A well implemented design and verification strategy, incorporating formal techniques at key
points in the design flow minimizes the likelihood of design errors.

2 The PCI Bus Protocol Standard Revision 2.1

The PCI bus specification was first developed by Intel Corporation and was released in June 1992. It was
intended to define an industry standard for local bus architectures. Revision 2.1 became available in early
1995 and is managed by a consortium of industry partners known as the PCI Special Interest Group. The
specification is a 282-page English language document describing the protocol, electrical, mechanical, and
configuration specification for PCI components and expansion boards.

The PCI specification defines two possible PCI agents, amasterand atarget. The master is the device that
initiates a transfer. The target is the device currently addressed by the master for the purpose of performing a
data transfer. The master and target state machines are independent. However, a master device must
incorporate a target device for the purpose of responding to system configuration requests.

The minimum PCI compliant device satisfies the requirements of a target-only device. This device requires 47
pins and can only respond to a master initiated transaction. A master device requires two additional signals,
(REQ# and GNT#), for it to handle data and addressing, interface control, arbitration, and system functions.
Figure 1 illustrates the required and optional signals for a PCI compliant device. The signals on the left are
required pins for target and master devices. The signals on the right are optional pins and are used to support
the 64-bit extension to the specification, exclusive access (LOCK#), interrupts, cache support, and the JTAG
(IEEE 1149.1) boundary scan interface.

AD[31::0]
C/BE{3::0]

PAR

FRAME#
TRDY#
IRDY#

STOP#
DEVSEL#

IDSEL

PERR#
SERR#

REQ#
GNT#

CLK
RST#

Address
& Data

Interface
Control

Error
Reporting

Arbitration

System

PCI
COMPLIANT

DEVICE

AD[63::32]
C/BE[7::4]#

PAR64
REQ64#
ACK64#

LOCK#

INTA#
INTB#
INTC#
INTD#

SBO#
SDONE

TDI
TDO
TCK
TMS
TRST#

64-Bit
Extension

Interface
Control

Interrupts

Cache
Support

JTAG
(IEEE 1149.1)

Required
Pins

Optional
Pins

Figure 1: PCI Compliant Device Signals

The heart of the PCI Bus Protocol is the burst transfer mechanism. A burst transfer consists of a single address
phase followed by two or more data phases. The start address and transaction type are issued during the
address phase. The target device latches the start address into an address counter and is responsible for
incrementing the address from data phase to data phase. Figure 2 illustrates a sample read transaction.

A basic bus cycle involves the FRAME#, IRDY#, TRDY#, C/BE# control signals as well as the multiplexed
address/data AD[31:0] lines and the parity signal PAR and DEVSEL#. The bus cycle starts with anaddress
phase. This is the first clock after FRAME# is asserted by the master. During this cycle, the address lines
carry the desired address and the C/BE# signals the bus command. Bus commands encode the address space
and direction of transfer. There are also some special bus cycles, like interrupt acknowledge and various
memory transfer modes. After the address phase, the master goes into thedata phase.

The addressed target, will then decode the address to determine if it needs to take the bus cycle. It can decode
either as a fast/medium/slow decoder, which are 1,2,3 cycles after the address phase. Once it has decoded and
accepted the bus cycle, it asserts the DEVSEL# signal to signal that it will take the bus cycle. When the master
has sent data via the AD[31:0] or when it is ready to receive data, it will assert the IRDY# signal. The target
indicates its readiness with the TRDY# signal. Only when the TRDY# and IRDY# signals are both asserted,
will a data transfer take place. Otherwise wait states are inserted. The master controls how much data is

transferred. When it is done transferring data, it will de-assert FRAME# on the last data phase. When the
target sees neither FRAME# or IRDY#, the master has finished.

The target uses the STOP# signal to signal the master that it has to terminate the current transaction. The PCI
Target asserts combinations of TRDY#, DEVSEL#, and STOP# to signal different termination conditions.
The PCI protocol is specified in plain English. The specification contains rules such as:

“Data is transferred when IRDY# and TRDY# are asserted.”

“When either TRDY# or IRDY# is deasserted, a wait cycle is inserted and no data is transferred.”

3 FormalCORE PCI/32 -- A Formally Verified PCI Interface

P
C

I
 B

U
S

 Master
 State
Machine

 Target
 State
Machine

 Parity
 Checker
Generator

P
C

I A
pp

lic
at

io
n

D
ev

ic
e

par

serr#
perr#

frame#
irdy#
req#
gnt#

trdy#
devsel#
stop#

add_reg[31:0]

 Latency
Timer Reg

 Status
Command

Base Address
 Registers

MaxMinLat
Interrupt Pin/L

Other Config
 Registers

Decoder/ Device Configuration

idsel_reg

hit
d_done
cfcmd

application status

Device ID
Vendor ID

ad_out[31:0]

ad[31:0]

idsel

C/BE#[3:0]

PCI Interface

cmdrd

cmdwr

cmd_reg

tstatus
cbe_reg[3:0]

cmdwr/rd

Figure 3: FormalCORE PCI/32 System Architecture

1 2 3 4 5 6 7 8 9CLK

FRAME#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Address

Buscmd BE#s

Data1 Data2 Data3

Address
 Phase

 Data
Phase

 Data
Phase

 Data
Phase

BUS TRANSACTION

W
ai

t

W
ai

t

W
ai

t

X
fe

r

X
fe

r

X
fe

r

Figure 2: PCI Timing Diagram

FormalCORE PCI/32 is a synthesizable VHDL 32-bit, 33 MHz PCI interface targeted to programmable
hardware, formally verified to be compliant with the v2.1 PCI specification. Figure 3 is a block diagram of the
FormalCORE PCI/32 system architecture.

The design is composed of three primary modules. A PCI Interface Module, Decoder/Device Configuration
Module, and PCI Application Module. The PCI Interface Module is the primary interface to the PCI bus and
user application. It contains the Target and Master state machines, parity circuit, and implements the bus
protocol. The Decoder/Device Configuration Module contains the PCI configuration registers and address
decode circuitry. The PCI Application Module is a stub module defining a backend interface. This module is
used to integrate the user's application into the PCI core. It is not specified in v2.1 since it is dependent on the
specific device. For example, the Application Interface would vary widely between a video device and a
modem. This partitioning allows us to swap different application backends to the existing core with minor
modifications.

4 Design and Verification Tools

The software tools comprising our design and verification suite included:

•= DRS (Derivational Reasoning System), formal synthesis system from Derivation Systems, Inc. to develop
high-level formal behavioral specification, high-level simulation, hardware emulation, and formal
synthesis to VHDL and gate-level netlist. We use DRS to derive a structural specification from the top-
level behavioral description, synthesize VHDL code and PVS theories. The system was also used for
functional simulation of the top-level specification, and as the interface to hardware emulation of the
synthesized design.

•= PVS[5] (Prototype Verification System) from SRI for validating safety and liveness properties of the top-
level behavior specification.

•= Verysys PropertyProver[8] and StructureProver[8]. PropertyProver is a state-of-the-art model checker that
can verify model properties at the Behavior, RTL and Gate levels. StructureProver is a high-performance,
high capacity equivalence checking tool that can be used at the RTL and Gate levels. The Verysys tool
suite was chosen for its support of the IEEE 1076 VHDL standard and hierarchical verification. In
addition, PropertyProver generates an input sequence and a VHDL testbench for counter-examples. The
built in VHDL simulator can be used to simulate the counter example.

•= Verysys Circuit Interface Language[3,8] to formally describe circuit properties. These properties are
described using temporal relationships between the various input and output ports of the circuit. CIL is
used to describe the PCI Compliance Model to validate the VHDL core. Properties are written in an
assumption-commitment style. Predicates in the logic are written using VHDL syntax.

•= ModelSim from Model Technologies for VHDL simulation. ModelSim is chosen because it is a full
featured VHDL simulator providing accurate modeling of the language. It provides a rich set of features.

•= Xilinx Foundation Express[9] for VHDL synthesis, gate-level timing analysis, gate-level simulation, and
FPGA programming. Foundation Express incorporates the Synopsys Express VHDL compiler and Aldec
gate-level timing analyzer and simulator. Foundation Express provides a low-cost, comprehensive
solution for FPGA programming. The entry to the tool can be VHDL, Verilog, Schematic entry, or gate-
level netlist. Xilinx offers a variety of chips that are PCI compatible and is an industry leader in
programmable hardware.

5 Design and Verification

The primary design criteria for FormalCORE PCI/32 was to synthesize a VHDL model from DRS that would
run at 33Mhz, optimized for size, and compatible with the various VHDL level tools. The generated VHDL
had to be compatible with the Verysys model checker, Synopsys FPGA Express compiler, and Model
Technologies VHDL simulator.

From the PCI Specification document, we developed a formal PCI compliance model in CIL, Verysys circuit
interface language. These properties are described using temporal relationships between the various input and
output ports of the circuit. They are extracted from the PCI rules in the specification document.

Formal design and verification is a theme that runs throughout the lifecycle of the FormalCORE PCI/32
development. Verification tools were used continuously once the design reached a state where the tools were
applicable. DRS synthesis served as a backplane for the design flow. Changes in the design were reflected in
the DRS top-level specification and the VHDL was re-synthesized.

The need for verification in this project was two fold. First the specification had to be proven to meet the PCI
specification properties. The correctness of the specification in derivation is assumed, not proven. Secondly,
even though DRS guarantees correctness of its transformations in the original specification, the state
representation and the VHDL translation are not reasoned about. Therefore, the generated VHDL had to be
shown to satisfy the same properties as the initial DRS specification.

Once a stable DRS specification was established, PVS was employed to validate the DRS top-level
description. DRS was then used to derive a structural description from the top-level specification and generate
VHDL. Verysys model checker, Model Technologies VHDL simulator, and Synopsis VHDL compiler were
used for VHDL property verification, simulation and synthesis. The synthesized gate-level design was
simulated with the Xilinx simulator.

Several modes of validation were always running in parallel. We performed functional simulation of the top-
level and structural DRS descriptions. We simulated the design both at the VHDL and gate-level. Formal
verification at the high-level, and formal verification at the VHDL level were used to validate properties of the
design. The design flow (Figure 4), from high-level formal specification to running hardware can be
characterized as five stages of design.

Specification Development

Formal Synthesis

VHDL Validation & Synthesis

Netlist Validation & Mapping

Post-design Validation

Figure 4: Design Flow

The design flow reflects a top-down design methodology. It provides for the formal specification and
verification at an abstract behavioral level, and a systematic process to refine the design to a concrete VHDL
implementation. The design flow incorporates formal and traditional validation techniques. The use of DRS

and formal methods contributes to the soundness of the specification and implementation, and VHDL provides
an industry standard language to interface to other tools. Figure 5 details the design and verification flow and
the tools used. Shaded boxes denote formal tools. Shaded ovals denote formal specifications. Clear boxes
denote traditional design tools.

High-level
Formal

Verification

Formal
Behavior

Specification

Functional
Simulation

VHDL
Simulation

Gate-level
Simulation

Formal
Synthesis

VHDL
Synthesis

Netlist
Mapping

FPGA
Design

Hardware
Platform

VHDL
Formal

Verification

Netlist
Timing

Analysis

Safety/Liveness
Properties

PCI Compliance
Model

DRS

VERYSYSSYNOPSYS

ALDEC XILINX

PVS

PVS

CIL

ALDEC

ModelSIM

DRS

DRS

Test Vectors

Test Vectors

Test Vectors

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5
Test Vectors

DSI PF2000

Formal Tool/
Specification

Figure 5: Design and Verification Flow

5.1 Specification Development

In the first stage the top-level behavior specification is developed and validated using simulation and formal
verification. Verification begins early using the DRS functional simulator. A high-level behavioral model is
written in DRS and run against test vectors. This behavior model becomes the reference model for all
subsequent verification and synthesis.

[b_busy
(lambda (add_reg cbe_reg idsel_reg ...)

(let ([devsel_lo_o HI] [serr_lo_o HI] [trdy_lo_o HI]
[stop_lo_o (not (and (or t_abort term)

(or wrcmd (and rdcmd tar_dly))))]
...)

(if (and (or frame (not d_done)) (not hit))
(b_busy ...)
(if (and (or frame irdy)

(and hit (and (or (not term) (and term ready))
(or free (and locked l_lock_lo)))))

(s_data ...)
...))))]

Figure 6: Code fragment for Target Interface b_busy state

The top-level DRS specification is a collection of communicating state machines. Each state machine is
defined in terms of a set of mutually recursive function definitions. A fragment of the b_busy state of the
Target Interface is depicted in Figure 6. Because of the reactive nature of the protocol specifications, the
specification is written at a fine level of granularity. The specification captures the complete synchronous
behavior of the PCI core circuit.

DRS descriptions were written for the master and target state machines along with their lock machines, the
configuration/decode circuit, the parity circuit, and a basic application backend. The chip-level glue-logic was
also written integrating all the modules into a single core. Figure 7 illustrates the modules and their
interconnectivity.

Target
 Lock

Add4 Dec4

 Target
Interface

 Master
Interface

Master
 Lock

Application
 Backend

Configuration
 Space

 Parity
Generator

Figure 7: DRS Specification Hierarchy

An abbreviated form of the top-level DRS description is shown below. The module instantiations are show in
bold.

(define mchip
(lambda (cbe_lo ad par idsel frame_lo irdy_lo trdy_lo stop_lo lock_lo

perr_lo serr_lo devsel_lo gnt_lo)
(stream-letrec

([tsbuf (lambda (o oe) (if oe o #\z))]
[parity (lambda ((d0 ... d31) (c0 c1 c2 c3)) (b-xor ...))]
...)

(letrec (...) ;; -- Component descriptions
(system-letrec

([(add_reg cbe_reg idsel_reg ...) (target_xface ad cbe_lo par ...)]
[(conf_data hit d_done cfcmd ...) (target_conf add_reg ad ...)]
[(ad_o cbe_lo_o tstatus t_abort ...) (backend mxfer add_reg ...)]
[(lock_lo_oe own_lock ...) (master_xface par idsel frame_lo ...)]
[(tfree tlocked) (target_lock frame_lo lock_lo l_lock_lo hit ...)]
[(lock_free) (master_lock frame_lo lock_lo own_lock)]
[par_c (parity (if par_dir ad_out ad)

(if par_dir cbe_lo_out cbe_lo))]
[ad_out (tsbuf32 (if (b-or ior cmdwr) ad_o conf_data)

(b-or ad_oe m_ad_oe))]
[frame_lo_out (tsbuf frame_lo_o frame_lo_oe)]
[irdy_lo_out (tsbuf irdy_lo_o irdy_lo_oe)]
...)

(list ad_out cbe_lo_out par_out frame_lo_out trdy_lo_out irdy_lo_out
stop_lo_out perr_lo_out serr_lo_out devsel_lo_out req_lo
lock_lo_out ...))))))

The DRS behavior model is automatically translated into a PVS theory to perform formal verification. The
primary goal is to verify that the specification satisfies a set of high-level safety and liveness properties.
Inconsistencies in the top-level specification found by PVS are then manually corrected in the DRS
specification.

The DRS->PVS translator generates a PVS function corresponding to the state to state transition of the DRS
model. PVS was used to analyze the functional properties of the specification. For example, we show that the
trdy_lo_o signal is asserted only whent_abort is false andready is true with the PVS theorem:

trdy_on_write: THEOREM
(FORALL (t_abort: bit, tar_dly: bit, ready: bit):

compute_trdy_lo(write, t_abort, tar_dly, ready) = true_lo
IFF NOT(t_abort) AND ready).

The From_idle_goto_busy theorem states that from IDLE, only whenframe_lo_i is asserted, the
Target sequencer goes to the BUS BUSY state.

From_idle_goto_busy: THEOREM
(FORALL ((frame_lo_i: bit), (irdy_lo_i: bit), (trdy_lo_i: bit),

(stop_lo_i: bit), (perr_lo_i: bit), (serr_lo_i: bit),
(devsel_lo_i: bit), (ready: bit), (t_abort: bit),
(term: bit), (state: state_type),
(cbe_reg: [bit, bit, bit, bit]), (tar_dly: bit),
(par_dat: bit), (par_en: bit), (par_i: bit),
(perr_dat: bit), (r_perr: bit), (rperr_reg: bit)):

idle(frame_lo_i, irdy_lo_i, trdy_lo_i, stop_lo_i,
perr_lo_i, serr_lo_i, devsel_lo_i, ready,
t_abort, term, state, cbe_reg, tar_dly, par_dat,
par_en, par_i, perr_dat, r_perr, rperr_reg)

= bus_busy
IFF (frame_lo_i = true_lo))

Many of the functional properties verified in PVS were also verified in the Verysys model checker. Both PVS
and Verysys were useful in finding errors in the design. Early in the design process, we used sample equations
from the PCI specification as a guide to developing the DRS specification. PVS uncovered overlaps in some
of the equations. A set of conditions would satisfy two different equations.

5.2 Formal Synthesis using DRS

In the second stage, formal synthesis is used to manipulate the design hierarchy and derive a VHDL
description from the top-level behavior specification. This process requires manual guidance from the
designer. DRS provides automated support for transforming the specification to a concrete implementation,
however, design decisions are made by the designer. DRS maintains correctness and does not allow the
introduction of errors. The key benefit is that it provides the designer with direct control over the synthesis
process.

DRS can manipulate a large class of designs including datapath and/or control oriented circuits. The PCI
specification is a control-dominated circuit geared for bus protocol. DRS allowed us to manipulate the PCI
design hierarchy providing a means of managing the complexity of the verification and defining the
synthesized VHDL modules. We found that manipulating the design hierarchy of the VHDL would impact
how the VHDL compiler would synthesize the design. Hierarchy played an important role in the speed of the
synthesized circuit. The synthesizer did better when the design was in logically organized major blocks than a
totally flat description or when there were many small modules instantiated in the larger ones.

The derivation was limited to obtaining a structural specification and generating the support modules from
DRS libraries. We added four valued logic libraries to DRS. This enabled DRS to generate tristated
input/output signals which are essential in a bus implementation.

The following table summaries the number of derivation steps, the specification and implementation size for
each of the modules, along with the top-level mchip module.

Add4 Dec4 Backend Txface Mxface Tconf Tlock Lock mchip
DervSteps 14 14 15 128 77 30 19 9 55
Spec Size 899 899 4440 12800 13906 5507 732 347 6209
Imp. Size 3194 3434 14286 12554 7471 10632 563 416 55790
VHDL Size 2669 2849 11909 11832 8425 8792 1002 858 48973
VHDL Comp 2669 2849 5493 9163 8425 8792 1002 858 9722

DRS and VHDL sizes include all the modules that make up the component. The component VHDL size lists
only the size of that component. All sizes in bytes.

5.3 VHDL Generation, Validation and Synthesis

5.3.1 VHDL Generation

Once the design is refined to a concrete architecture in DRS, VHDL files are automatically generated and the
VHDL Validation and Synthesis process begins. Model Technologies ModelSIM is used to simulate the
VHDL. To streamline our simulation environment, we created interfaces from the DRS simulator to the
VHDL and netlist simulator. This provided us the ability to localize our test vector generation within the DRS
framework, and then automatically generate test vectors to validate the netlist generated by the VHDL
compiler, and VHDL simulator.

The tools we used understood only a restricted subset of the VHDL language. We had to tune the VHDL
generation toward the common syntax used among these tools. For example, the Verysys VHDL type checker
could not resolve predicates of the form:ad(1:0) = "00". The DRS VHDL generation had to produce
expressions of the form:ad(1) = '0' and ad(0) = '0'.

The VHDL compiler infers registers in a design depending on the way the code is written. Rather than an
implicit mechanism to infer registers, we controlled the introduction of registers in the design by an explicit
register entity, that served as a state holding abstraction and directly corresponded to DRS registers. The
combinational logic is expressed as simple equations of assignments and entity instantiation. The resulting
VHDL follows the intended implementation architecture closely.

To improve performance we experimented with several hierarchical design layouts. When flattening
hierarchies the circuits were logically equivalent. However the circuit speed varied widely.

In generating VHDL, DRS constructs had to be mapped carefully over to VHDL constructs to ensure the
semantics of the DRS expression is maintained. One problem we ran into was generating VHDL code for
nested DRS if-then-else expressions. These expressions cannot be converted to selected signal assignments
(WITH statement) unless the else branch guard is ANDed with the negated test expression. However,
conditional signal assignment behaves just like a nested DRS if-then-else expression and is used instead of the
WITH statement. In fact, the Verysys model checker uncovered this bug in the DRS VHDL generation.

5.3.2 VHDL Validation

The Verysys model checker is used to validate the VHDL against the PCI compliance model written in CIL.
The underlying model checking technology used by the Verysys tools is the Siemens Circuit Verification
Environment (CVE) [3]. The system is a BDD based symbolic model checker. It supports EDIF and VHDL,
and generates VHDL test benches for counter examples.

Circuit properties are written in CIL (Circuit Interval Language). CIL formulae are built up from timed
predicates that consist of a state predicate and a temporal specification. The temporal specification describes
when the machine should be in a state that satisfies the state predicate. The state predicate is given in the
subset of Boolean expressions in VHDL. The temporal specifications refer either to a particular point of time,
or to a whole period. A point of time is specified after the keywordat . A period is specified by an interval,
which is a uniform representation of three different types:[t1, t2] , refers to the time betweent1 andt2
inclusively, [t1, infinite] , refers to t and every point aftert , [t, p] , refers to the time betweent
and the last point of time before the state predicatep is satisfied for the next time.

An interval is preceded byduring or within to specify whether the state predicate holds during the whole
period or at least once in the interval. Times are either integer constants or defined relative to a variablet
which is universally or existentially quantified byalways andfinally .

As an example, we express the property that the "Target Sequencer will never deadlock" as:

theorem target_deadlock;
assume: (set = '0' during [0, infinite]);
prove: always(possibly state = idle within [t, infinite]);

end theorem;

The assumption eliminates the reset state, and the proof guarantees that no matter what state the Target
Sequencer is in, there exists a path to the idle state.

We prove that the Target Sequencer that implements the sustained tristate signals correctly with the following
theorem:

theorem target_sustained_tristate_trdy;
assume: (set = '0' during [0, infinite]);
prove: always((trdy_lo_oe = '1' at t-1) and

(trdy_lo_oe = '0' at t)
implies (trdy_lo_o = '1' at t-1));

end theorem;

In order for a signal to adhere to the sustained tristate property, it must drive the signal high one clock cycle
before tristating the signal.

Most of the effort at this stage was spent developing the PCI compliance model. It was critical to be able to
ask the "right" question. This was difficult since we had no prior understanding of the PCI protocol. Once the
protocol was understood, writing the CIL properties from the PCI specification was fairly straight forward and
the actual running of the model checker was automatic. Counter examples generated by the model checker
were validated with the ModelSIM simulator at the VHDL level as well as in the DRS simulator. This
capability allowed us to pinpoint if the problem was in the top-level DRS specification, VHDL generation, or
VHDL code.

The design environment of this project consisted of two dynamic aspects: on the one hand the engineering
process and on the other the formal process. From initial specification to working hardware the model checker
did not find any errors that our hardware engineer did not find using traditional techniques. The model

checking was lagging behind in this process. Errors uncovered by the engineering process led to revisions in
the DRS specification.

After working hardware was achieved the model checker started finding errors in the design that the simulator
did not uncover. This was due to three facts. First, the simulation tests were not exhaustive. Second,
hardware and specification reached a level of maturity where the core appeared to work for most cases.
Thirdly, we developed a better understanding of the PCI protocol.

The compliance model provides a comprehensive formal validation of PCI compliance and becomes extremely
valuable in providing exhaustive analysis of the VHDL model. Inconsistencies found in the PCI specification
were documented, and design decisions were made to resolve them.

5.3.3 VHDL Synthesis

The VHDL files are input to Synopsys FPGA Express compiler for netlist synthesis. The issue in this process
is that minor changes to the VHDL would result in significant performance changes in the synthesized netlist.

5.4 Netlist Validation and Mapping

The next stage involves simulating the netlist, and using the model checker to validate that the VHDL
synthesis has not introduced any errors. Timing analysis is also done at this time. The netlist is then mapped
to the appropriate target technology for hardware programming. At this stage, the logic netlist is validated
using the Aldec netlist simulator. Test vectors written for the DRS architectural simulation are used at the
VHDL and netlist level.

The logic netlist is formally verified using Verysys StructureProver. This ensures that the synthesized netlist
behaves identical to the VHDL model in order to eliminate the possibility that logic bugs that would be
introduced during VHDL synthesis. The equivalence checker compares the finite state machine models of the
VHDL source and EDIF files of the synthesized netlist. There were no errors in the VHDL synthesis.

The Xilinx mapper then synthesized the appropriate configuration files for the target device.

5.5 Post-design Validation

Traditional hardware techniques were used for post-design validation.

The DRS Functional Test Environment (FTE) was used for hardware emulation of the synthesized PCI core.
The FTE consists of the DRS simulation environment communicating with a Ampro EBX form factor Pentium
based single board computer (SBC) and the PF2000 PC/104 FPGA module. The synthesized core is
downloaded on to the PF2000 FPGA module. Then the DRS simulator drives the inputs of the circuit, single
steps the clock, and samples the outputs, displaying them in the DRS simulator. In contrast to the functional
simulation of the model in DRS, the FTE was used to compare the functional behavior of the model to that of
a design that has been processed by implementation specific back end tools.

The core has been targeted to Xilinx XC4000 and Virtex family of FPGA devices. A working prototype is
running in two different environments. The first system is a standard PCI/ISAbus AT motherboard with a
AMD-K5 processor clocked at 133MHz. It includes an NE2000 compatible ISAbus based Ethernet card and a
PCI VGA card.. The second system is an AMPRO PC/104+ system consisting of a Ampro EBX form factor
Pentium based single board computer (SBC). Both systems are configured with 32Mb of memory and runs
Linux RedHat 6.0, which is based on a 2.2.5 Linux kernel.

6 Conclusions

The methodology developed to build the FormalCORE PCI/32 is an example of how formal tools and
traditional simulation and synthesis tools are integrated for the design and validation of VHDL IP cores. These
cores can then be integrated into larger designs providing the building blocks for complex designs.

The FormalCORE PCI/32 and associated PCI compliance model consists of pre-designed, pre-verified VHDL
components that can be integrated into larger designs and a validation suite providing exhaustive analysis of
the VHDL models using a commercial model checker. The core has been designed to be flexible and can be
adapted to a variety of designs with little or no modification to the VHDL or compliance model.

One observation is in the early stages of this project, traditional techniques led the design process. The
ModelSIM VHDL simulator, Aldec netlist simulator, and hardware Logic Analyzer were used to debug the
design. The model checker did not find any errors that either simulation or hardware debugging did not catch.
The traditional techniques were satisfactory in achieving a working prototype. In the later stages of the
project, the formal techniques led the design process. The model checker was able to find errors in the design
that were not tested for in simulation. Using the DRS system, we were able to routinely make changes to the
top-level specification, manipulate the design hierarchy, and re-synthesize the VHDL core. We could then re-
validate the core against the compliance model automatically.

Both PVS and the Verysys model checker were useful in developing the PCI core. PVS was used to verify
functional properties of the DRS top-level specification. Verysys was used to verify functional and temporal
properties of the DRS generated VHDL. The Verysys verification effort was more extensive since the end
goal was to develop a verified VHDL PCI core and compliance model.

This work has significantly enhanced our capability to design and validate VHDL cores. The enhancements
added to the DRS system are general and can be used to synthesize a wide array of designs.

The future work on this topic is to extend the PCI core and Compliance model to the 64-bit PCI standard,
retarget the core to operate at 66Mhz, and update the design to Revision 2.2 of
the PCI specification. In addition, we would like to perform an independent validation of the compliance
properties.

References

1. Bose, B. DRS – Derivational Reasoning System: A Digital Design Derivation System for Hardware
Synthesis. InSafety and Reliability in Emerging Control Technologies(1996), S. Zaleswki, Ed., Elsevier.

2. Bose, B., Tuna, E., and Choppell, V., A Tutorial on Digital Design Derivation Using DRS., InFormal
Methods in Computer-Aided Design, M. Srivas and A. Camilleri (eds.), Springer, 1996, pp. 270-274.

3. Bormann, J., Lohse, J., Payer, M., and Venzl, G., Model Checking in Industrial Hardware Design, In
Proceedings 32nd Design Automation Conference, pp. 298-303, June 1995.

4. IEEE Standard VHDL Language Reference Manual. The Institute of Electrical and Electronics Engineers,
Inc., New York, IEEE Std 1076-1993 edition, 1994.

5. Owre, S., Rushby, J., and Shankar, N. PVS: A Prototype Verification System. InThe 11th International
Conference on Automated Deduction (CADE), Volume 607 of Lecture Notes in Artificial Intelligence
(Saratoga, NY, June 1992), D. Kapur, Ed., Springer-Verlag, pp. 748-752.

6. PCI SIG. PCI Local Bus Specification, Revision 2.1., June 1995.
7. Shanley, T., and Anderson, D.PCI System Architecture. Addison Wesley, ISBM 0-201-40993-3.
8. Verysys Design Automation: Verysys Prover Environment Manual, VT-0050, Version 2.1, Rev. A,

Verysys Design Automation, 42707 Lawrence Place, Fremont, CA 94538.
9. Xilinx, Foundation Series Software User Manual, Version 1.5i., Xilinx, 2100 Logic Drive, San Jose, CA

95124.

Structuring Formal Control Systems Specifications for Reuse:
Surviving Hardware Changes�

Jeffrey M. Thompson, Mats P.E. Heimdahl and Debra M. Erickson
Department of Computer Science and Engineering

University of Minnesota
4-192 EE/CS; 200 Union Street S.E.

Minneapolis, MN 55455 USA
+1 (612) 625-1381

fthompson,heimdahl,ericksong@cs.umn.edu

Abstract

Formal capture and analysis of the required behav-
ior of control systems have many advantages. For in-
stance, it encourages rigorous requirements analysis,
the required behavior is unambiguously defined, and
we can assure that various safety properties are satis-
fied. Formal modeling is, however, a costly and time
consuming process and if one could reuse the formal
models over a family of products, significant cost sav-
ings would be realized.

In an ongoing project we are investigating how to
structure state-based models to achieve a high level
of reusability within product families. In this paper
we discuss a high-level structure of requirements mod-
els that achieves reusability of the desired control be-
havior across varying hardware platforms in a prod-
uct family. The structuring approach is demonstrated
through a case study in the mobile robotics domain
where the desired robot behavior is reused on two di-
verse platforms—one commercial mobile platform and
one build in-house. We use our language RSML�e to
capture the control behavior for reuse and our tool
NIMBUS to demonstrate how the formal specification
can be validated and used as a prototype on the two
platforms.

Keywords: Requirements, Formal Models, Re-
quirements Reuse, Control Systems, RSML�e

�This work as been partially supported by NSF grants CCR-
9624324 and CCR-9615088, and by NASA grant NAG-1-2242.

1 Introduction

Reuse of software engineering artifacts across
projects has the potential to provide large cost savings.
Traditionally, the research in the reuse community has
focused on how to construct reusable software com-
ponents, and how to classify and organize these com-
ponents into libraries where they can be retrieved for
use in a particular application. We know, however, that
coding errors are not the main source of problems and
delays in a software project; incomplete, inconsistent,
incorrect, and poorly validated requirements are the
primary culprit [4]. Thus, we hypothesize that reuse
of requirements in conjunction with reuse of design
and code will provide greater benefits in terms of both
cost and quality. In this paper we present an approach
to structuring formal requirements models for control
systems that make the control requirements reusable
across platforms where the hardware (sensors and ac-
tuators) may vary. We also illustrate the structuring
approach with an example from the mobile robotics
domain.

The beginnings of our approach is a high-level re-
quirements structuring technique based on the rela-
tionship between system requirements and the soft-
ware specification. We developed this structuring
technique to enable a software development approach
we call specification-based prototyping [23] where
the formal requirements model is used as a prototype
(possibly controlling the actual hardware—hardware-
in-the-loop-simulation) during the early stages of a
project. Here we present how this structuring ap-
proach also enables reuse of the high-level require-
ments across members of a product family with vari-
abilities in the hardware components. The approach is

demonstrated via a case study in the mobile robotics
domain where the desired robot behavior is reused on
two diverse platforms—one commercial mobile robot
and one built in-house. We use our language RSML�e

to capture the desired control behavior for reuse and
our tool NIMBUS to demonstrate how the formal spec-
ification can be validated and used as a prototype on
both platforms.

The rest of the paper is organized as follows. Sec-
tion 2 describes related work on requirements reuse
and product families. Then, Section 3 describes our
approach to structuring the high-level system require-
ment and the software specification. Section 4 de-
scribes the mobile robotics platforms that we are using
as the case study in the paper and presents a simple
analysis of their commonalities and variabilities. The
requirements of the mobile platforms in the family are
presented in Section 5. The refinement of these system
requirements to a software specification is presented in
Section 6. In this section we also show how the sys-
tem requirements are reused across the members of the
product family. Finally, Section 7 presents a summary
and conclusion.

2 Related Work

The foundations for reuse of can be traced back to
the early work on program structure and modularity
pioneered by David Parnas and others [3, 20, 21, 22].
This work establishes the basis for reuse: the concept
of a self contained module with well-defined inter-
faces. Nevertheless, the guidelines for how to encap-
sulate and structure a model (in this case implemen-
tations) for reuse is not sufficiently addressed in this
early work. Thus, subsequent research in the field of
software reuse seeks to further define and provide ad-
ditional tools and techniques for reuse.

In the area of requirements reuse, Lam et al. pro-
vides some guidance on specific techniques which can
be used by organizations to introduce requirements
reuse into their software process [15]. In addition,
Lam addressed requirements reuse in the context of
component-based software engineering [14]. Our area
of interest is more in structuring of specifications to
achieve reuse; nevertheless, this work presents some
ideas about how to package and specify generic re-
quirements and how to factor requirements into plug-
gable requirements parts [15]. Of particular interest is
the relationship of their work to the product families
work being done at Lucent Technologies [2, 24].

Product family engineering is related to the work
presented in this paper; in particular, the FAST (Fam-
ily Oriented Abstraction, Specification and Transla-

tion) approach is of interest. FAST provides a pro-
cess for how to identify commonalities and variabili-
ties across a product family. This commonality analy-
sis can then be used to provide domain specific devel-
opment tools that will greatly reduce the development
costs for later generations of the product family. FAST
does not explicitly address the structuring of product
requirements. The FAST concepts of the domain anal-
ysis and the commonality analysis can, however, be di-
rectly applied to our work with formal specifications;
FAST provided some of the inspiration for the work
presented here.

Little work has been done on how to structure and
develop a formal specification in a language such as
RSML�e. One notable exception is the CoRE method-
ology [5, 6, 7] developed by the Software Productivity
Consortium. CoRE includes much useful information
on how to perform requirements modeling in a semi-
formal specification language (similar to the formal
SCR defined at the Naval Research Laboratory [12]).
Even so, the structuring mechanism proposed in the
CoRE guidebook is based on the physical structure of
the system as well as which pieces of the system that
are likely to change together—these two (often con-
flicting) structuring mechanisms may or may not be
beneficial to reuse. Furthermore, the way in which
the structuring techniques achieve reuse is not spec-
ified in the guidebook—reuse is not specifically ad-
dressed. Our work is based on many ideas similar to
those found in CoRE, but we have extended and re-
fined these ideas to address structuring of state-based
requirements models to achieve (1) conceptual clar-
ity, (2) robustness in the face of the inevitable require-
ments changes to which every project is subjected, (3)
robustness of the requirements as hardware evolves,
and (4) reuse of models as well as V&V results.

3 Structuring

In our work we are primary interested in safety crit-
ical applications; that is, applications where malfunc-
tion of the software may lead to death, injury, or en-
vironmental damage. Most, if not all, such systems
are some form of a process control system where the
software is participating in the control of a physical
system.

3.1 Control Systems

A general view of a software controlled system can
be seen in the center of Figure 1. This model con-
sists of a process, sensors, actuators, and a software
controller. The process is the physical process we are

REQ
MON CON

INPUT OUTPUT

IN

SOFT

OUT

Process

Sensors Actuators

Controller
Software
Output

Software
Input

Controlled
Variables

Monitored
Variables

Figure 1. A traditional process control
model (center) and how it is captured
with the four variable model

attempting to control. The sensors measure physical
quantities in the process. These measurements are pro-
vided as input to the software controller. The con-
troller makes decisions on what actions are needed
and commands the actuators to manipulate the pro-
cess. The goal of the software control is to maintain
some properties in the physical process. Thus, un-
derstanding how the sensors, actuators, and process
behave is essential for the development and evalua-
tion of correct software. The importance of this sys-
tems view has been repeatedly pointed out in the liter-
ature [19, 17, 12].

To reason about this type of software controlled
systems, David Parnas and Jan Madey defined what
they call the four-variable model (outside square of
Figure 1) [19]. In this model, the monitored vari-
ables (MON) are physical quantities we measure in
the system and controlled variables (CON) are phys-
ical quantities we will control. The requirements on
the control system are expressed as a mapping (REQ)
from monitored to controlled variables. For instance,
a requirement may be that “in case of a collision, the
robot must back up and turn 90 degrees left.” Natu-
rally, to implement the control software we must have
sensors providing the software with measured values
of the monitored variables (INPUT), for example, an
indication if the robot has collided with an obstacle.
The sensors transform MON to INPUT through the IN
relation; thus, the IN relation defines the sensor func-
tions. To adjust the controlled variables, the software
generates output that activates various actuators that
can manipulate the physical process, for instance, a
means to vary the speed of the robot. The actuator

function OUT maps OUTPUT to CON. The behavior
of the software controller is defined by the SOFT rela-
tion that maps INPUT to OUTPUT.

The requirements on the control system are ex-
pressed with the REQ relation; the system require-
ments shall always be expressed in terms of quanti-
ties in the physical world. To develop the control soft-
ware, however, we are interested in the SOFT relation.
Thus, we must somehow refine the system require-
ments (the REQ relation) into the software specifica-
tion (the SOFT relation).

3.2 Structuring SOFT

The IN and OUT relations are determined by the
sensors and actuators used in the system. For example,
to determine if the robot has collided with an obstacle
we may use a bumper with micro-switches connected
to a digital input card. Similarly, to control the speed
of a robot we may use a digital to analog converter
and DC motors. Armed with the REQ relation, the IN
relation, and the OUT relation we can derive the SOFT
relation. The question is, how shall we do this and how
shall we structure the description of the SOFT relation
in a language such as RSML�e?

As mentioned above, the system requirements
should always be expressed in terms of the physical
process. These requirements will most likely change
over the lifetime of the controller (or family of simi-
lar controllers). The sensors and actuators are likely to
change independently of the requirements as the con-
troller is reused in different members of a family or
new hardware becomes available; thus, all three rela-
tions, REQ, IN, and OUT, are likely to change over
time. If either one of the REQ, IN, or OUT rela-
tions change, the SOFT relation must be modified.
To provide a smooth transition from system require-
ments (REQ) to software specification (SOFT) and to
isolate the impact of requirements, sensor, and actu-
ator changes to a minimum, the structure of the soft-
ware specification SOFT should be based heavily on
the structure of the REQ relation [18, 23].

We achieve this by splitting the SOFT relation into
three pieces, IN�1, OUT�1, and SOFTREQ(Figure 2).
IN�1 takes the measured input and reconstructs an es-
timate of the physical quantities in MON. The OUT�1

relation maps the internal representation of the con-
trolled variables to the output needed for the actuators
to manipulate the actual controlled variables. Given
the IN�1 and OUT�1 relations, the SOFTREQ rela-
tion will now be essentially isomorphic to the system
requirements (the REQ relation) and, thus, be robust if
it is reused on a new platform (manifested as changes

MON CONINPUT OUTPUT
IN SOFT OUT

SOFTREQ OUT-1IN-1

Figure 2. The SOFT relation can be split
into three composed relations.

in the IN and OUT relations). Such changes would
only effect the IN�1 and OUT�1 portions of the soft-
ware specification. Thus, the structuring approach out-
lined in this section will makes the SOFTREQ portion
of the software specification reusable over members of
a product family exhibiting the same high-level behav-
ior.

4 Mobile Robotics Platforms

When evaluating our work, we wanted to find a do-
main were a variety of similar platforms could be con-
structed on a university budget in a timely and cost
effective manner. Furthermore, we wanted this do-
main to be realistic—with the inclusion of noisy sen-
sors and actuators and the possibility of complex sen-
sor fusion and error detection. The mobile robotics
domain seemed ideally suited for these needs.

The mobile robotics platforms that we are using in
our research range in size from about the size of the
Mars Pathfinder to a small lego-bot. The robots have
a limited speed, and can operate either autonomously
(via a radio modem or radio Ethernet) or via a tether
cable going to a personal computer. The robotics plat-
forms come from various vendors and have a wide va-
riety of sensors and actuators available.

The platforms that are discussed in this paper are
shown in Figure 31. One platform, the Pioneer [1],
is built and sold by ActivMedia, Inc. The Pioneer in-
cludes an array of sonar sensors in the front and sides
that allow it to detect obstacles. To detect collisions,
the Pioneer monitors its wheels and signals a collision
when the wheels stall. The Pioneer includes an exten-
sive control library called Saphira. The Pioneer is con-
trolled by a radio modem that plugs in to the personal
computer’s serial port. Saphira manages the commu-
nication over the radio modem. Saphira is capable of
implementing complex rule-based control functions;
however, in our work we are using only the simplest

1Photograph by Timothy F. Yoon

Figure 3. A picture of the robotic plat-
forms used in this paper

of Saphira functions that allow us nearly direct access
to the sensors and actuators. Nevertheless, the level of
abstraction presented by the Saphira library is signif-
icantly higher than on the other platform in this case
study: the lego-bot.

The lego-bot is a smaller platform built from Lego
building blocks and small motors and sensors. The
lego-bot uses a tank-like track locomotion system and
has infrared sensors for range detection. The lego-bot
is controlled via a tether to the robot from the per-
sonal computer. This tether is connected to a data-
acquisition card and the software specification for the
lego-bot behavior must directly manage the low-level
voltages and signal necessary to control the robot;
there is very little support for the actuators and sen-
sors.

Despite the significant difference between the plat-
forms, we wanted them to exhibit nearly identical vis-
ible behaviors; the only difference would be in the
hardware determined speed of the robot’s movements.
Therefore, the visible behavior (the REQ relation) for
each robot is the same. Note that we are not addressing
non-behavioral requirements such as power consump-
tion and wear and tear of hardware components in our
discussions of reuse. We have focused solely on the
behavior captured in the requirements.

5 The REQ relation

The first step in a requirements modeling project is
to define the system boundaries and identify the mon-
itored and controlled variables in the environment. In
this paper we will not go into the details of how to

scope the system requirements and identify the mon-
itored and controlled variables—guidelines to help
identify monitored and controlled variables have been
discussed in numerous other places [6, 13, 18]. Here it
suffices to say that the monitored and controlled vari-
ables exist in the physical system and act as the in-
terface between the proposed controller (software and
hardware) and the system to be controlled.

For the mobile robots, the goal was to construct a
simple reactive control behavior that would cause the
robot to explore its environment. To accomplish this
objective, the robot must be able to perform several
tasks:

� If the robot detects an obstacle, it shall attempt to
avoid it.

� If the robot collides with an obstacle, it shall at-
tempt to recover from the collision and continue
exploration.

� In the absence of a collision or obstacle, the robot
shall proceed to move forward at full speed.

In this case study, we wanted all robots of the prod-
uct family to exhibit the same exploratory behavior. To
capture this behavior we must discover monitored and
controlled variables in the environment that will allow
us to build the formal model. In addition, while eval-
uating candidates for monitored and controlled vari-
ables we must keep in mind that the REQ model shall
apply to all members of the product family.

We identified a robot’s speed and heading as con-
trolled variables. Speed ranges from 0 to 100 and can
be mapped into a speed for each family member using
the maximum speed of the particular robot. Heading
ranges from -180 to 180 and indicates the number of
degrees that the robot may have to turn to avoid an ob-
stacle.

We identified CollisionDetected, Range, and Ob-
stacleOrientation as monitored variables. The Colli-
sionDetected variable is simply a Boolean value which
is true when there is a collision and false otherwise.
The Range variable is the distance from the robot to
the nearest obstacle and the ObstacleOrientation de-
notes whether the obstacle is straight ahead, or on the
right or left of the robot. These variables clearly reside
in the system domain and are sufficient to model the
desired behavior. If the monitored and controlled vari-
ables are chosen appropriately, the specification of the
REQ relation will be focused on the issues which are
central to the requirements on the system.

Since our work is based around a modeling lan-
guage called RSML�e (Requirements State Machine
Language without events), a state-based language suit-
able for modeling of reactive control systems, we pro-

vide a short introduction to the notation before we con-
tinue with a discussion of the REQ relation for the mo-
bile robots.

5.1 Introduction to RSML�e

RSML�e is based on the language Requirements
State Machine Language (RSML) developed by the
Irvine Safety Research group under the leadership of
Nancy Leveson [17]. RSML�e is a refinement of
RSML and is based on hierarchical finite state ma-
chines and dataflow languages. Visually, it is some-
what similar to David Harel’s Statecharts [10, 8, 9].
For example, RSML�e supports parallelism, hierar-
chies, and guarded transitions. The main differences
between RSML�e and RSML are the addition in
RSML�e of rigorous specifications of the interfaces
between the environment and the control software,
and the removal of internal broadcast events. The re-
moval of events was prompted by Nancy Leveson’s
experiences with RSML and a new language called
SpecTRM-RL that she has evolved from RSML. These
experiences have been chronicled in [16].

An RSML�e specification consists of a collection
of state variables, I/O variables, interfaces, functions,
macros, and constants, which will be briefly discussed
below.

In RSML�e, the state of the model is the values
of a set of state variables, similar to mode classes in
SCR [12]. These state variables can be organized in
parallel or hierarchically to describe the current state
of the system. Parallel state variables are used to rep-
resent the inherently parallel or concurrent concepts in
the system being modeled. Hierarchical relationships
allow child state variables to present an elaboration of
a particular parent state value. Hierarchical state vari-
ables allow a specification designer to work at multiple
levels of abstraction, and make models simpler to un-
derstand.

For example, consider the behavioral requirements
for our mobile robots outlined in the introduction to
this section. The state variable hierarchy used to model
the requirements on this system can be represented as
in Figure 4. This representation includes both parallel
and hierarchical relationships of state variables: Fail-
ure and Normal are two parallel state variables and
Robot Recover Action is a child of Normal.

Next state functions in RSML�e determine the
value of state variables. These functions can be orga-
nized as transitions or conditional assignments. Con-
ditional assignments describe under which conditions
a state variable assumes each of its possible values.
Transitions describe the condition under which a state

Reactive_Control
Failure

Ok

Fail

Normal

Startup

Cruise_Forward

Collision_Recover

Robot_Recover_Action

Backward

Turn

Done

Avoid_Obstacle

Obstacle_Distance

Near

Mid

Far

Obstacle_Orientation

On_Right

On_Left

Robot_Avoid_Action

Turn

Forward

Done

Figure 4. The REQ relation state hierarchy

variable is to change value. A transition consists
of a source value, a destination value, and a guard-
ing condition. The two state function types are log-
ically equivalent; mechanized procedures exist to en-
sure that both types of functions are complete and con-
sistent [11].

The next state functions are placed into a partial
order based on data dependencies and the hierarchi-
cal structure of the state machine. State variables are
data-dependent on any other state variables, macros,
or I/O variables that are named in their transitions or
condition tables. If a variable is a child variable of
another state variable, then it is also dependent on its
parent variable. The value of the state variable can be
computed after the items on which it is data-dependent
have been computed. For example, the value of the
Robot Avoid Action state variable would be computed
after the Obstacle Distance state variable because the
action to take is dependent upon the range of the ob-
stacle.

Conditions are simply predicate logic statement
over the various states and variables in the specifica-
tion. The conditions are expressed in disjunctive nor-
mal form using a notation called AND/OR tables [17]
The far-left column of the AND/OR table lists the logi-
cal phrases. Each of the other columns is a conjunction
of those phrases and contains the logical values of the
expressions. If one of the columns is true, then the ta-
ble evaluates to true. A column evaluates to true if all

of its elements match the truth values of the associated
columns. An asterisk denotes “don’t care.” Examples
of AND/OR tables can be found later in this section and
in the next section.

I/O Variables in the specification allow the analyst
to record the monitored variables (MON) or values
reported by various external sensors (INPUT) (in the
case of input variables) and provide a place to cap-
ture the controlled variables (CON) or the values of
the outputs (OUTPUT) of the system prior to sending
them out in a message (in the case of output variables).

To further increase the readability of the specifi-
cation, RSML�e contains many other syntactic con-
ventions. For example, RSML�e allows expressions
used in the predicates to be defined as functions and
familiar and frequently used conditions to be defined
as macros. Finally, RSML�e requires rigorous speci-
fication of interfaces between the environment and the
model.

5.2 REQ Relation Overview

Due to space constraints, the entire model of the
REQ relation cannot be given in this paper and we will
focus on an illustrative subset. Figure 4 shows that the
REQ relation definition at the top level is split between
two state variables: Failure and Normal. The Failure
state variable encapsulates the failure conditions of the
REQ relation, whereas the Normal state variable de-

scribes the how the robot transitions between the vari-
ous high-level behaviors discussed at the introduction
to this section (obstacle avoidance, collision recovery,
etc.). For the reminder of our discussion of REQ, we
will focus on the Normal state variable where this as-
pect of the requirements is captured (Figure 5).

The Normal variable defaults to the startup value.
This allows the specification to perform various ini-
tialization tasks and checks before the main behav-
ior takes over. The first transition in Figure 5 states
that after two seconds, the specification will enter the
Cruise Forward state.

The next two transitions govern the way that
the Normal state variable can change from the
Cruise Forward value. If a collision is detected, then
the state variable changes to the Collision Recover
state. If an obstacle is detected, then the specifica-
tion will enter the Avoid Obstacle state. Otherwise,
the value of the Normal state variable will remain un-
changed.

If a collision or obstacle is detected, the machine
needs to begin the Cruise Forward behavior when the
avoidance/recovery action has been completed. We ac-
complished this in the mobile robotics specification by
providing a “done” state in each of the sub-behaviors.
This is illustrated by the fifth and sixth transitions in
Figure 5.

Finally, it is also possible to transition from
Avoid Obstacle directly to Collision Recover if, for
example, the robot hits an undetected obstacle; this
case is covered by the final transition in Figure 5.

Given this definition of the REQ relation high-
level behaviors, the definitions of the sub-behaviors
can be constructed in a similar and straightforward
manner. For example, if the robot hits an obsta-
cle, it will attempt to back up, turn, and then pro-
ceed forward again. This behavior is specified in
the Robot Recover Action state variable by having the
variable cycle though the values Backward, Turn, and
finally Done.

6 The SOFT relation

When refining the specification from REQ to
SOFT, we select the sensors and actuators that will
supply the software with information about the envi-
ronment, that is, we must select the hardware and de-
fine the IN and OUT relations for each platform. Con-
sequently, we will also need to define the IN�1 and
OUT�1 for each platform. We do not have the space
to discuss the IN, OUT, IN�1, and OUT�1 for every
monitored and controlled variable. Instead, we will
focus our discussion on two areas where the Pioneer

State Variable

Normal

Location: Reactive_Control

Transition: Startup Cruise_Forward

Condition:

TIME > 2 s T

..Failure IN_STATE Ok T

Transition: Cruise_Forward Collision_Recover

Condition:

CollisionDetectedMacro() = TRUE T

..Failure IN_STATE Ok T

Transition: Cruise_Forward Avoid_Obstacle

Condition:

ObstacleDetectedMacro() = TRUE T

CollisionDetectedMacro() = FALSE T

..Failure IN_STATE Ok T

Transition: Collision_Recover Cruise_Forward

Condition:

Prev_Step(..Robot_Recover_Action IN_STATE Done) T

..Failure IN_STATE Ok T

Transition: Avoid_Obstacle Cruise_Forward

Condition:

Prev_Step(..Robot_Avoid_Action IN_STATE Done) T

..Failure IN_STATE Ok T

Transition: Avoid_Obstacle Collision_Recover

Condition:

CollisionDetectedMacro() = TRUE T

..Failure IN_STATE Ok T

Figure 5. The definition of the Normal
state variable

and the lego-bot presented illustrative and challenging
differences.

6.1 Obstacle Detection|
Sonar versus Infrared

As members of the mobile robot product family that
we specified in Section 5, both the Pioneer and the
lego-bot have the ability to sense the distance to ob-
jects in their surroundings. Distance sensors typically
function by emitting some sort of signal (for example,
a sound in the case of sonar) and then measuring the
amount of time between the emission of the signal and
its being received back at the sensor. Given how fast
the signal can travel, the distance to the closest object
can be determined. Although the distance sensors may
be somewhat similar in their operation, different sen-
sors provide very different accuracies and ranges. For
example, a laser range finder is far more accurate and
has much less noise than the sonar sensors.

The Pioneer uses sonar sensors and the Saphira
software package to accomplish obstacle detection
whereas the lego-bot uses a set of simple infrared
range finders. This significant difference in the type
of sensors as well as differences in the number and
placement of the sensors leads to two quite different IN
relations. The differences of the IN relations necessi-
tate different IN�1 in the computation of the estimated
value of the Range monitored quantity.

Function

PTransformRange

Type: INTEGER

Parameters:

· iInRange IS INTEGER

:= 0 IF

iInRange <= 0 F T

iInRange > 700 T F

:= iInRange/7 IF

iInRange > 0 T

iInRange <= 700 T

Figure 7. IN�1 Range for the Pioneer

The difference between the SOFT relations for the
two platforms (with respect to the range to obstacles)
can be encapsulated in a function which transforms the
input variables from the range sensors to estimates of
the monitored quantity Range. The computation of

Function

LTransformRange

Type: INTEGER

Parameters:

· iInRange IS INTEGER

:= 0 IF

iInRange <= 200 F T

iInRange > 900 T F

:= (900 – iInRange)/8 IF

iInRange > 200 T

iInRange <= 900 T

Figure 8. IN�1 Range for the lego-bot

IN�1 for the Pioneer is pictured in Figure 7 and for
the lego-bot is in Figure 8. For the Pioneer, the sonar
inputs range from 0 to 700 and must be scaled appro-
priately to a number between zero and 100.

For the lego-bot, the transformation is more com-
plex. Both the sonar and the infrared distance sensors
have a certain range close to the sensor where the sig-
nals cannot be used for range detection (in the case of
the sonars, the signals that are emitted bounce back to
the sensor too fast for the sensor to detect). Thus, the
sensor will report that no obstacle is present when, in
fact, an obstacle is very close. In the case of the Pi-
oneer, this problem is handled by the Saphira library.
For the lego-bot, however, the RSML�e specification
must include a minimum threshold as well as a scaling
factor for the maximum values. In our case, readings
below 200 from the infrared sensor cannot be trusted
and we simply treat any reading below 200 as if the
distance is 0, indicating that no obstacle has been (or
can be) detected (Figure 8).

Thus, we have shown that even though the sensors
and the way in which we have access to the sensors
differs widely between the Pioneer and the lego-bot,
we can still use the same SOFTREQ model for both
robot platforms. In this way, we make the high-level
behavior robust and reusable in the face of changes in
the range finder.

6.2 Speed|
Saphira versus Pulse Modulation

The previous section focused on platform depen-
dent variabilities in the IN and IN�1 relations. The
Pioneer and the lego-bot have more significant differ-

Reactive_Control
OUT_Prime_Eq_Class

MotorStatus

MotorOff

MotorOn
MotorPulseStatus

On

Off

SOFT_REQ_Eq_Class

Failure

Ok

Fail

Normal

Startup

Cruise_Forward

Collision_Recover

Robot_Recover_Action

Backward

Turn

Done

Avoid_Obstacle

Obstacle_Distance

Near

Mid

Far

Obstacle_Orientation

On_Right

On_Left

Robot_Avoid_Action

Turn

Forward

Done

Figure 6. The state machine for the lego-bot

ences in the way that they control their propulsion and
in their steering systems (the OUT and OUT�1 rela-
tions).

The Pioneer’s Saphira library provides a high-level
control of the Pioneer’s motors so that the specifica-
tion for SOFT on the Pioneer platform is very simi-
lar to REQ. The transformation of the desired speed
performed in OUT�1 for the Pioneer (Figure 9) only
requires some minor scaling with respect to the Pio-
neer’s maximum speed. The result of this transforma-
tion can then be directly sent to the Pioneer platform
and Saphira will control the hardware to achieve the
desired speed.

Function

PTransformConSpeed

Type: INTEGER

Parameters:

· iConSpeed IS INTEGER

:= 0 IF

iConSpeed = 0 T

:= (PMaxSpeed * iConSpeed)/100 IF

iConSpeed = 0 F

Figure 9. OUT�1 Speed for the Pioneer

On the other hand, the OUT�1 specification for the
speed of the lego-bot is significantly more complex.

State Variable

MotorPulseStatus

Location: ..MotorOn

Transition: Off ® On

Condition:

TIME >= PREV_STEP (..MotorPulseStatus TIME_ENTERED Off) +
LMotorPWMTimeOut(Heading, ConSpeed)

T

PREV_STEP(..MotorPulseStatus IN_STATE Off) T

Transition: On ® Off

Condition:

TIME >= PREV_STEP(..MotorPulseStatus TIME_ENTERED On) + LPWMOnTimeOut T

PREV_STEP(..MotorPulseStatus IN_STATE On) T

ConSpeed = 100 F

:= On

Condition:

ConSpeed = 100 T

Figure 10. The part of OUT�1 for the
Lego-bot that performs the pulsing on
the motors

This is because the SOFT relation for the lego-bot
must control the motors directly with low-level hard-
ware signals. The speed of the lego-bot is controlled
by a technique called pulse-width modulation of the
DC motors: the speed of the motors is determined by
the length of time which passes between pulses of cur-
rent applied to the motor. Therefore, the SOFT specifi-
cation cannot simply output the speed value with some
transformation applied; instead, we must use the com-
puted value for the controlled variable Speed to deter-
mine the pulse width for the motors and then output
the pulses accordingly; the motors will then provide
enough propulsion to move the lego-bot at the desired
speed.

This control strategy necessitates a more complex
OUT�1 relation for the desired speed; the OUT�1 re-
lation can no longer be a simple function—in this case
we need to add an additional state machine. To model
the pulse modulation we add a state variables to the
SOFT specification so that the machine can output the
required pulses. These additions are shown in Fig-
ure 6. The MotorPulseStatus state variable is the part
of the OUT�1 specification that determines the pulse
width. Figure 10 shows the definition of this state vari-
able.

A key component of the pulse-width modulation is
the LMotorPWMTimeOut function which determines
the length of time to pulse the motors (Figure 11). No-
tice that because of the lego-bot’s tank-track propul-
sion system, the motors must be pulsed both in the case
of a turn and in the case that the robot is moving for-
ward. Thus, the LMotorPWMTimeOut function takes
as parameters the controlled variables for speed and
heading and produces the correct timeout values.

The values for the pulse intervals were were cho-
sen by running experiments to determine which pulse
interval would achieve which speed. We have, there-
fore, encapsulated these constants so that if we were to
change motors on the lego-bot in the future we could
simply change the constants rather than having to re-
visit the pulse-width modulation process.

Thus, despite the fact that the Pioneer and the lego-
bot differ significantly in the way that the motors are
controlled, the SOFTREQ relation can again be reused
across the platforms. Furthermore, changes in the
REQ relation (and analogous changes to SOFTREQ)
will be independent of changes in the OUT and
OUT�1 relations.

7 Conclusions

This paper describes how structuring the require-
ments based on the relationship between the system

Function

LMotorPWMTimeOut

Type: TIME

Parameters:

· iHeading IS INTEGER
· iConSpeed IS INTEGER

:= LSlowPWMOffTimeOut IF

iHeading = 90 T F F

iHeading = -90 F T F

iConSpeed = 25 F F T

:= LMidPWMOffTimeOut IF

iHeading = 45 T F F F

iHeading = -45 F T F F

iConSpeed = 50 F F T F

iConSpeed = -50 F F F T

:= LFastPWMOffTimeOut IF

iHeading = 20 T F F

iHeading = -20 F T F

iConSpeed = 75 F F T

:= 0 s IF

iConSpeed = 100 T

Figure 11. The timeout function for
pulse-width modulation on the Lego-bot.

requirements and the software specification can lead
to benefits in terms of maintainability and reusability.
Specifically, we describe a technique for structuring
high-level requirements for reuse in the face of hard-
ware changes.

From the four variable model for process control
systems, we have described how the REQ relation can
be refined to the SOFT relation while maintaining a
separation between the part of SOFT which is related
to REQ (SOFTREQ) and the parts of SOFT which han-
dle the particular sensors and actuators in the system
design (IN�1 and OUT�1). This allows us to sepa-
rate changes in the requirements from sensor and ac-
tuator changes and achieve better maintainability and
reusability.

This techniques was demonstrated on a case study
in the mobile robotics domain using two quite differ-
ent robots. One robot is commercially produced and
is equipped with a rich control library that provides
many complex control functions, for example, travel-
ing at a requested speed. The other robot was build in-
house from Lego building blocks and off-the-shelf mo-
tors and sensors. This robot is controlled completely
by the software specification in RSML�e through our
NIMBUS toolset.

We demonstrated the usefulness of the structur-
ing approach by reusing the high-level requirements
(REQ) across a (currently quite small) family of mo-
bile robots. Nevertheless, there are numerous issues
left to address. In the future, we plan to define more
complex control behaviors and investigate how indi-
vidual behaviors (or operational modes) can be suc-
cessfully reused.

References

[1] Activmedia robotics website. Makers of the Pionner robot.
http://www.activrobots.com/.

[2] Mark A. Ardis and David M. Weiss. Defining families: The
commonality analysis. In Nineteenth International Confer-
ence on Software Engineering (ICSE’97), pages 649–650,
1997.

[3] K.H. Britton, R.A. Parker, and D.L. Parnas. A procedure
for designing abstract interfaces for device interface modules.
In Fifth International Conference on Software Engineering,
1981.

[4] F. P. Brooks. No silver bullet – essence and accidents of soft-
ware engineering. IEEE Computer, 20(4):10–19, April 1987.

[5] Consortium requirements engineering handbook. Technical
Report SPC-92060-CMC, Software Productivity Consortium,
December 1993.

[6] S. Faulk, J. Brackett, P. Ward, and J Kirby, Jr. The CoRE
method for real-time requirements. IEEE Software, 9(5),
September 1992.

[7] Stuart Faulk, Lisa Finneran, James Jr. Kirby, Sudhir Shah, and
James Sutton. Experience applying the CoRE method to the
lockheed C-103J software requirements. In Proceedings of
the Ninth Annual Conference on Computer Assurance (COM-
PASS), pages 3–8, 1994.

[8] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, pages 231–274,
1987.

[9] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot. Statem-
ate: A working environment for the development of complex
reactive systems. IEEE Transactions on Software Engineer-
ing, 16(4):403–414, April 1990.

[10] D. Harel and A. Pnueli. On the development of reactive sys-
tems. In K.R. Apt, editor, Logics and Models of Concurrent
Systems, pages 477–498. Springer-Verlag, 1985.

[11] Mats P. E. Heimdahl and Nancy G. Leveson. Completeness
and consistency in hierarchical state-base requirements. IEEE
Transactions on Software Engineering, pages 363–377, June
1996.

[12] C. L. Heitmeyer, B. L. Labaw, and D. Kiskis. Consistency
checking of SCR-style requirements specifications. In Pro-
ceedings of the Second IEEE International Symposium on Re-
quirements Engineering, March 1995.

[13] Michael Jackson. The world and the machine. In Proceedings
of the 1995 Internation Conference on Software Engineering,
pages 283–292, 1995.

[14] W. Lam. Developing component-based tools for requirements
reuse: A process guide. In Eighth International Workshop
on Software Technology and Engineering Practice (STEP’97),
pages 473–483, 1997.

[15] W. Lam, J.A. McDermid, and A.J. Vickers. Ten steps towards
systematic requirements reuse. In Third IEEE International
Symposium on Requirements Engineering (RE’97), pages 6–
15, 1997.

[16] Nancy G. Leveson, Mats P.E. Heimdahl, and Jon Damon
Reese. Designing specification languages for process control
systems: Lessons learned and steps to the future. In Seventh
ACM SIGSOFT Symposium on the Foundations on Software
Engineering, September 1999.

[17] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D.
Reese. Requirements specification for process-control sys-
tems. IEEE Transactions on Software Engineering, pages
684–706, September 1994.

[18] Steven P. Miller. Modeling software requirements for embed-
ded systems. Technical report, Advanced Technology Center,
Rockwell Collins, Inc., 1999. In Progress.

[19] David L. Parnas and Jan Madey. Functional documentation for
computer systems engineering (volume 2). Technical Report
CRL 237, McMaster University, Hamilton, Ontario, Septem-
ber 1991.

[20] D.L. Parnas. On the design and development of program fam-
ilies. IEEE Transactions on Software Engineering, 2(1):1–9,
1976.

[21] D.L. Parnas. Designing software for ease of extension and
contraction. In Third International Conference on Software
Engineering, 1978.

[22] D.L. Parnas, P.C. Clements, and D.M. Weiss. The modular
structure of complex systems. IEEE Transactions on Software
Engineering, 11(3):256–266, 1985.

[23] Jeffrey M. Thompson, Mats P.E. Heimdahl, and Steven P.
Miller. Specification based prototyping for embedded systems.
In Seventh ACM SIGSOFT Symposium on the Foundations on
Software Engineering, September 1999.

[24] David M. Weiss. Defining families: The commonality analy-
sis. Technical report, Lucent Technologies Bell Laboratories,
1000 E. Warrenville Rd, Naperville, IL 60566, 1997.

Automated V&V for high integrity systems, a targeted formal methods
approach

Simon Burton, John Clark, Andy Galloway, John McDermid
Department of Computer Science.

University of York,
Heslington, York.

Y010 5DD, England.
+44 1904 432749

fburton, jac, andyg, jamg@cs.york.ac.uk

Abstract

This paper describes the intermediate results of a
project to develop automated, high integrity, software
verification and validation techniques for aerospace ap-
plications. Automated specification validation and test
case generation are made possible by the targeted use
of formal methods. Specifically, the restricted domain of
use is exploited to reduce the set of mathematical prob-
lems to those that can be solved using constraint solvers,
model checkers and automated proof tactics. The prac-
ticality of the techniques is enhanced by the tight inte-
gration of the formal methods to intuitive specification
notations, existing specification modelling tools and a
traditional software development process.

This paper presents evidence to support an emerging
appreciation amongst the software engineering commu-
nity that, for the benefits of formal methods to be widely
exploited in industry, an approach must be taken that in-
tegrates formal analysis with intuitive engineering nota-
tions, traditional engineering approaches and powerful
tool support.

1. Introduction

It is widely accepted that verification and validation
(V&V) activities for high integrity systems are expen-
sive (typically over 50% of total software development
costs [2]). The requirements for such systems are of-
ten subject to change throughout the project so the high
V&V costs are normally incurred not only once, but
many times. Also, the cost of fixing errors later in the
development life-cycle can be many times more than
if they were identified during the phase in which they
were introduced. Additionally, commercial pressures to

reduce time to market, technological conservatism and
the need to meet standard test metrics make the software
V&V process a highly fragile and risky component of
system development.

The use of formal methods has long been advo-
cated as a means of improving the development of high
integrity systems. Despite evidence to support this
claim, e.g. [14, 17], formal methods have still to gain
widespread use in the software industry. Industrial ac-
ceptance of formal methods requires the development of
powerful tools to support formal analysis, pragmatic ap-
proaches to using these tools within a software process
and more industrially applicable examples of the suc-
cessful use of formal methods [6, 15]. Also, for the en-
gineers with the system domain knowledge to be able
to perform V&V there is a need, as Ould [22] put it, to
“disguise” the formality so that an impractical amount
of formal methods skill is not a pre-requisite to effective
V&V.

This paper describes the results of a project that
has achieved practical integration of automated formal
methods for V&V into an industrially applicable soft-
ware development process. The paper is structured as
follows: Section 2 introduces the background and ob-
jectives of the work reported here. Section 3 describes
the translation of domain specific, intuitive engineer-
ing notations into formal specifications. Section 4 de-
scribes how these intermediate formal specifications can
be used to automatically analyse certain properties of
the requirements specification. Section 5 describes a
method of automated test case design and test data gen-
eration, based again on the intermediate formal spec-
ification. Section 6 presents some results of applying
the techniques in practice and gives an evaluation of the
work so far. Section 7 presents some conclusions and
suggests directions for future work.

2. Background and objectives

The work reported here is being undertaken as part
of a process improvement programme to demonstrate a
“better, faster, cheaper” software process for develop-
ing Electronic Engine Controllers (EECs) for aircraft en-
gines. These are real-time, safety critical, fault-tolerant
computer systems embedded in complex engineering
products. The contribution of the V&V strand of the
process improvement work (the subject of this paper) is
to develop efficient and effective V&V techniques that
can be smoothly integrated into a practical engineering
process.

The use of formal methods is intended to increase
the integrity of engineering activities already performed
such as specification and testing. These improvements
must be implemented within a process that engineers
can use with the minimum amount of re-training. There-
fore intuitive engineering notations have been retained
as a means of software specification and techniques have
been developed to increase the integrity of these specifi-
cations through the use of automated formal analysis.

Although this research is targeted towards specifica-
tion validation and software testing, it is acknowledged
that significant benefits in these areas can not be at-
tained without improving the rigour and consistency of
the requirements specifications. Specification notations
are therefore used that are both “engineer friendly” and
amenable to formal analysis. The savings demonstrated
in the validation and testing phases serve as drivers to
encourage investment in these improved specification
activities. It is expected that the most significant cost-
benefits can be achieved by capturing more requirements
and software specification errors at the specification val-
idation phase (therefore reducing the number of itera-
tions of the software design, coding and testing phases)
and by automating test case generation (one of the most
time consuming parts of the present process).

3. Translating engineering notations into
formal specifications

Domain specific graphical engineering notations are
popular with engineers, but their semantics are often un-
clear from inspection of the diagrams alone. In reality,
it is also unlikely that only one notation will be used to
specify a system, or indeed that notations will be used
consistently between projects. The resulting loose spec-
ification and inconsistency complicates the task of au-
tomating specification validation and test case genera-
tion based on these notations. Indeed as the notations
change so frequently (as a result of commercial trends,
new or outdated tool-support etc.) it may not even be

cost effective to invest in automated V&V tool support
which may in practice only have a limited life-span and
audience.

Translation of the graphical requirements into a core
formal notation removes the vagueness of the original
notations and makes the behaviour implied by the spec-
ification explicit for the purposes of V&V. Validation
may thus be supported by rigorous (or formal) reason-
ing using the formal representation. Also, by explicitly
rendering all specified behaviour, the intermediate repre-
sentation is a strong basis for automated test case design.
The use of a common formal notation to model several
engineering notations facilitates re-use of the analysis
and test techniques. The introduction of a new notation
requires only a translation to the formal notation, after
which the previously developed tools and heuristics can
be re-used. A strict translation process allows a fixed
structure to be enforced on the resulting formal specifi-
cation that can be exploited in the development of au-
tomated heuristics, e.g. test data generation procedures
and proof tactics.

The work reported here focuses on the specification,
validation and verification of the discrete aspects of en-
gine controllers (well-established mathematically based
processes were already in place for modelling and vali-
dating the continuous aspects of the control software –
e.g. the control laws). The Practical Formal Specifica-
tion (PFS) notation [7, 19] is used to specify the func-
tional software requirements. The PFS notation consists
of hierarchical state machines (in particular, a dialect of
statecharts1 [9]) and tabular forms, such as those em-
ployed in SCR (Software Cost Reduction) e.g.[12]. The
notation has so far proven popular with the engineers
introduced to PFS2. PFS also provides a theory for com-
bining components specified in the notation – based on
weakest precondition reasoning – and a set of suggested
“healthiness properties” that specifications should dis-
play to be considered valid.

One of the cornerstones of the PFS approach is that
engineers are not only required to specify the intended
behaviour of components of the system, they are also
obliged to state explicitly the assumptions on which
each component relies, i.e. its domain of applicability.
Healthiness conditions can then be stated and discharged
to demonstrate that, for instance, within the assumptions
of each component the behaviour is completely and un-
ambiguously defined. Additionally, healthiness condi-
tions are stated to demonstrate that where behaviour is
scoped by assumptions, it is only ever used when the
required assumptions hold.

1The state-based notation employed in this paper, a sub-set of Stat-
echarts, differs slightly from that usually employed in PFS.

2Who have stated that they find the notation valuable even without
the added rigour provided by a formal underpinning.

Figure 1. Thrust Reverser System (De-
ployed)

Due to the restricted domain, the specifications
shared some common attributes which reduced the set of
(mathematical) problems that needed to be solved when
applying the formal analysis:

� The software requirements did not involve the stor-
age and maintenance of complex information struc-
tures, typically only fixed-point numbers, condi-
tions and enumerated types were used.

� In the control software domain, non-determinism
(looseness) as a means of abstraction is difficult to
apply3. In the example given here, the requirements
were tightly specified, only one outcome was to be
specified for each situation4.

PFS components are either reactive (the outputs de-
pend only on the current set of inputs) and specified us-
ing tables, or else state-based (the outputs depend on
both the current inputs and the current state of the sys-
tem) and specified using annotated state-machines.

The example used to illustrate the techniques re-
ported in this paper is the specification of a thrust re-
verser deployment mechanism. The thrust reverser pro-
vides part of the retarding force for an aircraft on land-
ing (see figure 1). It slows the aircraft by using pivot-
ing doors to redirect the engine thrust. For the purpose
of clarity and brevity, we will present a much simpli-
fied version of the specifications, although their essence
is retained. A real thrust reverser system was used as

3The controlled environment is understood in terms of the great
many relationships between physical quantities, as a result the expres-
sion of requirements are highly explicit and deterministic.

4Although PFS notation does allow some non-deterministic ab-
stractions to be used in certain situations [7].

the primary case study for evaluating the techniques de-
scribed here. The software specification used for the
case study consisted of 70 pages of PFS tables and stat-
echarts, component combination diagrams and support-
ing text.

Examples of software requirements written in PFS
are given in figures 2 and 3. Figure 2 describes a func-
tion that returns a boolean value (DoorDeployed) corre-
sponding to whether a door is locked into its deployed
position or not. The assumption defines the context
in which the component may be safely used (in this
case, the conditions under which sensor values may be
deemed to be valid). The guard/definition pairings de-
fine the conditions (guards) under which the function
returns particular values (definitions). A state-machine
that specifies which commands should be sent to the
door actuators based on the pilot actions and current
door position is given in figure 3. The part of the tran-
sition labels before the ‘/’ defines the condition under
which the transition is taken. The rest of the label de-
fines the action to be performed on taking the transition.
The values for DoorDeployed, DoorStowed and Pilot-
Command are calculated based on functions defined in
the reactive notation. Likewise the DoorActuators com-
mand would be transformed into actuator signals based
on the command and a number of environmental and po-
sitional inputs. This function would also be specified in
the reactive notation.

Both the reactive and state-based components are
translated into formal specifications (we use the model-
based notation Z [24] due to the large amount of local
experience and existing in-house tool support). The se-
mantics of PFS notations has been formally specified
also using Z and this is used to define the translation
from the reactive components into Z. The state-based
components are modelled using Statemate [10] (a com-
mercially available tool that allows Statecharts to be en-
tered and animated via a mouse-driven interface). The
semantics used by the tool are well-documented [11] and
have also been formally specified [20, 29]. These se-
mantics are used to define the translation from the State-
charts into Z. The formal specifications for both notation
types are structured as follows:

� Auxiliary definitions: These may include defini-
tions of types, constants and relations used to con-
strain the system according to the static semantics
of the engineering notation.

� Global State (for Statecharts only): Contains all in-
formation relating to the persistent state of the sys-
tem. This may include a set of currently active be-
havioural states, active events and the values of all
data variables local to the statechart. The global
state is constrained by semantic relations specified

Function: DoorDeployed
Assumption: FullyRetracted � RamPosition �

FullyExtended AND 0 � Hinge � 90

Guard 1: RamPosition > DeployedPosition AND Hinge >
80 AND DeployLock = Activated

Definition 1: True
Guard 2: RamPosition < DeployedPosition OR Hinge <

80 OR DeployLock = Deactivated
Definition 2: False

Figure 2. Reactive component for sensing thrust reverser door deployment

Idle

Deploying Stowing

DoorDeployed=True/
DoorActuators=Off

DoorStowed=True/
DoorActuators=Off

not (PilotCommand=Stow) and

DoorActuators=Deploy
DoorDeployed=False/ DoorStowed=False/

DoorActuators=Stow

not (PilotCommand=Deploy) and

PilotCommand=Stow/

PilotCommand=Deploy/

PilotCommand=Deploy/

Figure 3. State-based component for controlling door deployment

in the auxiliary definitions (defined in terms of a
state invariant).

� Operations: The dynamic behaviour of the system
is specified as a set of operations. Each operation
defines a transformation of the global state (for stat-
echart operations only) and inputs to the compo-
nent in terms of a pre-condition. A post-condition
constrains the next value of the global state (for
Statecharts operations only) and a definition of the
outputs of the component. One operation is speci-
fied for each reactive definition and for each state-
chart transition. These operations form the basis of
the specification validation and test case generation
activities described in the following sections.

The Statemate [10] tool provides an “Application
Programming Interface” (API), that allows direct access
to the internal form of the specification. An interfacing
tool, called StateZ, was written by the authors, that takes
this internal form and, based on an understanding of the
formal semantics of the Statecharts, directly generates
a formal specification of the statechart in Z. Included
in this specification are the accompanying proof conjec-

tures required to discharge particular healthiness checks
of the specifications (see section 4) and automatically
generated English language annotations. This informal
text provides the traceability between the formal opera-
tions and their corresponding part in the original require-
ments or a description of the property which the conjec-
tures are used to prove. These annotations not only allow
the generated Z document to be reviewed for correctness
with respect to the original requirements (verifying the
automated translation) but also form the basis of the test
descriptions which are used to associate each test with
the property in the requirements being checked. The ad-
dition of the informal text generation to the translation
tool was found to greatly increase the readability and us-
ability of the formal specification and associated tests.

The Statemate and StateZ tools can be run in parallel,
allowing the Z to be re-generated whenever a change is
made to the Statecharts. Coupled with the automated
theorem proving described below, this allows the formal
analysis to be used as a development aid rather than a
separate post development activity.

At present, no tool support exists for translating the
PFS reactive notation into Z (this step is done by hand)

and therefore the checking of the reactive components
was not as tightly integrated into the specification pro-
cess as for the Statecharts, however we predict that this
should not present any technical difficulties, given a suit-
able method of electronically recording and managing
the reactive tables.

4. Specification validation

In current industrial practice, many requirements er-
rors are only found once the system has been imple-
mented. Detecting them at an earlier stage in the de-
velopment would greatly reduce the cost of (both imple-
mentation and V&V) re-work. This can best be achieved
by applying a variety of diverse methods to validate the
requirements specifications. These can include peer re-
view, model animation (as supported by tools such as
Statemate) and automated formal analysis. The use of
intuitive engineering notations would normally exclude
the possibility of applying formal analysis. However,
based on the same mapping used to generate the formal
specification, specification healthiness conditions can be
couched as formal constraints. Formal analysis can then
be used to show the truth (or otherwise) of these con-
straints.

Completeness5 and determinism6 are two of the
healthiness conditions suggested by the PFS approach.
If the behaviour of a component is defined as a set of
operations fOp1;Op2; :::Opng over the inputs and state,
then a conjecture on the completeness of the specifica-
tion of that component can be formulated as follows:

` 8GlobalState; Inputs � Assumptions)
pre Op1 _ pre Op2 _ ::: pre Opn

Informally, for each possible value of the global state
(if there is one) and each combination of inputs that sat-
isfy the validity assumptions of the component, the pre-
condition of at least one operation is satisfied.

A similar conjecture can be defined to show the de-
terminism of the operations. Each combination of global
state and inputs that satisfies the component validity as-
sumption must satisfy at most one operation.

` 8GlobalState; Inputs � Assumptions)
8 i : 1::n� 1 � 8 j : i + 1::n �

:(pre Opi ^ pre Opj)

5The behaviour of a system is defined for each combination of in-
puts and current state.

6The behaviour of a system is unambiguously defined for each
combination of inputs and current state.

Completeness and determinism conjectures for the
example reactive definition and state-based component
are shown in figures 4 and 5 respectively.

` 8RamPosition : N; Hinge : N;

DeployLock : Activated j Deactivated �
(FullyRetracted � RamPosition � FullyExtended
^ 0 � Hinge � 90))

(RamPosition > DeployedPosition ^
Hinge > 80 ^ DeployLock = Activated) _
(RamPosition < DeployedPosition _
Hinge < 80 _ DeployLock = Deactivated)

Figure 4. Completeness conjecture for Do-
orDeployed

` 8 State : Idle j Deploying j Stowing;
PilotCommand : Off j Deploy j Stow;

DoorDeployed : Boolean;
DoorStowed : Boolean �
State = Stowing)

:(DoorStowed = True ^
:PilotCommand = Deploy ^
DoorStowed = False) ^
:(DoorStowed = True ^
PilotCommand = Deploy) ^
:(:PilotCommand = Deploy ^
DoorStowed = False ^
PilotCommand = Deploy)

Figure 5. Determinism conjecture for Stow-
ing

Closer inspection of these two conjectures show that
they are invalid. For the reactive component, no out-
come is specified if the hydraulic ram is exactly at the
deployed position or the hinge is at exactly 80 degrees.
For the state-based component, it is not clear to which
state the machine should move while in the Stowing
state if the pilot requests deployment at the same mo-
ment as the doors become stowed. Depending on the
behaviour specified within the Idle and Deploying states
(these could be super-states encapsulating more detailed
behaviour) taking one transition over another may have
a serious impact on the behaviour of the system.

The conjectures that arose from the case studies were
proven using CADiZ [26, 28]. CADiZ is a general pur-
pose Z type checker and theorem prover that allows a
user to interactively browse, type check and perform

DoorDeployedOperation
RamPosition? : N

Hinge? : N

DeployLock? : Activated j Deactivated
DoorDeployed! : Boolean

(FullyRetracted � RamPosition? � FullyExtended ^ 0 � Hinge? � 90))

((RamPosition? � DeployedPosition ^ Hinge? � 80 ^ DeployLock? = Activated) ^
DoorDeployed! = True) _

((RamPosition? < DeployedPosition _ Hinge? < 80 _ DeployLock? = Deactivated) ^
DoorDeployed! = False)

Figure 6. Z operation schema for DoorDeployed

proofs upon a Z specification. CADiZ allows gen-
eral purpose proof tactics to be written in a lazy func-
tional notation [27], these can be invoked from within
a CADiZ window and applied to any proof obligation
on the screen. This level of proof tactic re-use is possi-
ble because of the consistent structure of the complete-
ness and determinism conjectures. A proof tactic has
been written to prove the determinism and completeness
conjectures. The tactic first simplifies the constraint and
then calls either the SMV [3] model checker (most suit-
able for predicates involving finite types) or a simulated
annealing based constraint solver [4] (used for counter-
example generation for predicates involving mixed nu-
meric types including integers and reals). If the check
fails, a counter-example is given. This information has
been found to be extremely valuable when tracking the
error in the specification. Conjectures that can not be au-
tomatically discharged in this way involve a mixture of
enumerated and infinite numeric types. This combina-
tion is not currently supported by the constraint solvers.
Restricting the numeric types to sensible finite ranges
allows these constraints to be checked automatically.

The healthiness checks that failed have been found to
be due to areas of omission or ambiguity in the original
system requirements that were not detected through re-
view or animation. This illustrates that there is much
benefit to be obtained by verifying relatively simple
properties of the specifications and the high level of au-
tomation ensures that the only additional work required
is that of locating the errors in the specification based
on the counter-examples. This work would otherwise be
done at a later stage with perhaps less illuminating data
to work from.

The high level of automation allows the analysis to be
re-run each time the specification is changed, further re-
ducing the cost of rework. Although the interactive ver-
sion of CADiZ allows the proof effort to be automated

it still requires some repetitive work from the user to
load the generated Z file and select each proof obliga-
tion in turn to apply the proof tactics. Work is under-
way to encapsulate the functionality of CADiZ within
an API. This will provide the opportunity to fully in-
tegrate the formal analysis into specification modelling
tools. Instant feedback on the properties being analysed
can then be presented to the user using the same format
as the original specification. The details of the analysis
would be recorded (as the intermediate specification and
proofs in Z) for review by engineers with the relevant
formal methods skills.

5. Automatic test case generation

The formal specification describes each atomic action
defined by the requirements specification. These opera-
tions can be used as basic test specifications. If data can
be found to satisfy these constraints, the results of apply-
ing the data to the implementation can be used to gain
confidence in its correctness with respect to the specifi-
cation. The success of testing depends on the ability to
select data that demonstrates the presence of a fault in
the program. Category-partitioning [21] is a method of
deriving tests based on a formal specification and testing
heuristics based on common error types. Test data gen-
erated for the partitioned specification is then assumed
to have a greater chance of detecting errors in the imple-
mentation (at least errors of the type used to formulate
the testing heuristic). This approach was first applied
to formal specifications by Ostrand and Balcer [21] and
has been developed and applied to the formal specifica-
tion notation Z by Stocks and Carrington [25].

The category-partition method is based on the theory
of equivalence classes [8]. The input domain of the test
specification is partitioned into sets of data that exhibit
the same behaviour in the specification. If the equiva-

DoorDeployedOperationPartition1
RamPosition? : N

Hinge? : N

DeployLock? : Activated j Deactivated
DoorDeployed! : Boolean

(FullyRetracted � RamPosition? � FullyExtended ^ 0 � Hinge? � 90))

(RamPosition? = DeployedPosition ^

(RamPosition? � DeployedPosition ^ Hinge? � 80 ^ DeployLock? = Activated) ^
DoorDeployed! = True) _

((RamPosition? < DeployedPosition _ Hinge? < 80 _ DeployLock? = Deactivated) ^
DoorDeployed! = True)

DoorDeployedOperationPartition2
RamPosition? : N

Hinge? : N

DeployLock? : Activated j Deactivated
DoorDeployed! : Boolean

(FullyRetracted � RamPosition? � FullyExtended ^ 0 � Hinge? � 90))

(RamPosition? = DeployedPosition + 1 ^

(RamPosition? � DeployedPosition ^ Hinge? � 80 ^ DeployLock? = Activated) ^
DoorDeployed! = True) _

((RamPosition? < DeployedPosition _ Hinge? < 80 _ DeployLock? = Deactivated) ^
DoorDeployed! = True)

DoorDeployedOperationPartition3
RamPosition? : N

Hinge? : N

DeployLock? : Activated j Deactivated
DoorDeployed! : Boolean

(FullyRetracted � RamPosition? � FullyExtended ^ 0 � Hinge? � 90))

(RamPosition? > DeployedPosition + 1 ^

(RamPosition? � DeployedPosition ^ Hinge? � 80 ^ DeployLock? = Activated) ^
DoorDeployed! = True) _

((RamPosition? < DeployedPosition _ Hinge? < 80 _ DeployLock? = Deactivated) ^
DoorDeployed! = True)

Figure 7. Test partitions for DoorDeployed

lence class hypothesis is assumed to hold in the imple-
mentation, only a selection of data from each equiva-
lence class is needed to show that the implementation
satisfies the specification for all data in that class.

As an example, the operation defining the DoorDe-

ployed function (from figure 2, but corrected based on
the completeness analysis described above) will now be
partitioned to verify that the boundary used to define
when the hydraulic ram is in the deployed position is
correctly implemented in the code. The Z specification

8X; Y : N � X � Y ,

X = Y _

X = Y + 1 _

X > Y + 1

Figure 8. Generic test heuristic for �

of the operation is given in figure 6. The ? and ! dec-
orations are used to distinguish between the input and
output parameters to the schema. Based on the assump-
tion that errors often occur on or around boundaries, ap-
plying a boundary value analysis partitioning strategy
would result in the partitions shown in figure 7. The ad-
ditional constraints added by the partitioning are shown
in bold. These partitions together with those generated
for the condition where the hydraulic ram is not in the
deployed position, from the second guard in figure 2,
fully test the boundary.

The category-partition method has been automated as
extensions to the CADiZ theorem prover. Partitioning
heuristics are specified as lemmas and general-purpose
proof tactics are used to apply the heuristics via the
graphical user interface. The predicate to be partitioned
is highlighted and a proof tactic invoked via a menu
option which automatically introduces the partitioning
heuristic into the operation conjecture, instantiates the
generic heuristic with the operands of the predicate and
simplifies the whole conjecture to reveal a disjunction
of partitions. Each partition is then converted into a sep-
arate schema operation. The lemma used to create the
partitions shown in figure 7 is given in figure 8. The
user is also given the opportunity to amend the support-
ing English language description of the operation being
partitioned, to include for example the rationale behind
using the particular partitioning strategy.

The method of specifying the heuristics as lemmas,
stored in a separate Z library file, which are then ‘cut’
into the operation has several important advantages.
Properties of the heuristics themselves can be proven
(e.g. that the partitions together maintain the state-space
of the operation). If more heuristics are required (e.g.
based on common errors specific to the system under de-
velopment), they can be added without making a change
to the software itself. The test specifications can be in-
stantiated with test data via a similar mechanism to the
test partitioning. The test specification is highlighted
and an option called from within a CADiZ menu. A
proof tactic is then automatically applied that simplifies
the constraint and applies either the SMV model checker
or simulated annealing constraint solver to generate a set
of data satisfying the test specification.

Once the test data has been generated, CADiZ pro-

duces a corresponding AdaTEST [16] test script. AdaT-
EST provides a harness for automating the execution,
checking and documentation of tests for software writ-
ten in the Ada language. AdaTEST can also record the
structural code coverage achieved by running the tests.
Manually producing these test scripts, consumes a large
proportion of the test engineers time. By automating
this step, effort that was previously required for test im-
plementation can now be redirected towards more rigor-
ous test design. The generated test scripts also include
the informal text derived from the original requirements
and annotated with the test rationale during partition-
ing. This text is automatically included in the AdaTEST
test results file and provides the traceability between any
suspected fault in the program, the requirement under
test and the heuristic used in designing the test.

The test specifications for the case study were first
partitioned to give Modified Condition/Decision Cover-
age7 (MC/DC) of each operation. Additional tests were
then generated based on other heuristics, such as bound-
ary value analysis. If full MC/DC (as mandated by
certification standards such as D0-178B [23]) was not
achieved by running these tests, it was assumed that the
untested code represented refinements in the design or
potential errors. Additional manual test effort then con-
centrated on writing tests for and reviewing these po-
tentially problematic areas of code. The targeting of
testing resources in this way was made possible by the
high amount of automation achieved in generating the
requirements covering tests.

6. Results and Evaluation

A summary of the specification validation and test-
ing work performed for the thrust reverser case study
is shown in figure 9. The numbers include only auto-
matically generated proof obligations and tests and the
requirements errors found by discharging the proofs. An
activity is said to be automated if it requires at most
a single interaction from the user to perform (e.g. a
proof is discharged by selecting a completeness conjec-
ture and choosing “Completeness Check” from the on-
screen menu). Consequently these activities take very
little time to perform. Many of the proof obligations
stretched over 4 pages of formal text. Each of these
would have taken an engineer a significant amount of
time to prove or disprove. On a Pentium II 400 MHz
computer running the linux operating system, the largest
of these proofs took no more than a second to discharge.

The activities in the process described in this paper
that have so far been automated are: automatic genera-
tion of a formal specification and associated healthiness

7MC/DC is achieved by showing that each condition within a de-
cision can independently affect that decision’s outcome[23].

State-based components:
State-machines 9
States 48
Transitions 112
Z operations 112
Specification validation proofs 74
Automatically discharged proofs 74
Requirements errors found 18
Automatically generated tests 262
Reactive components:
Tables 34
Definition/Guard pairings 84
Z operations 34
Specification validation proofs 62
Automatically discharged proofs 52
Requirements errors found 18
Automatically generated tests 237

Figure 9. Summary of results

property proof obligations from a Statechart modelled
using STATEMATE, automatic proof or generation of a
counter-example for PFS (Statechart and tabular) com-
pleteness and determinism healthiness properties, auto-
matic partitioning of formally specified operations (de-
rived from Statecharts of tabular requirements) into test
cases based on pre-defined heuristics and the automatic
generation of test data for the partitions and associated
AdaTEST test script. Activities that we believe can be
automated or are already in the process of being auto-
mated are; automatic generation of a formal specifica-
tion and associated healthiness proof obligations from
PFS tabular requirements (given a consistent form of
recording and managing these requirements), automatic
identification of the healthiness property proof obliga-
tions within the Z specification and application of the
appropriate proof tactics and the automatic selection of
partitioning strategies to generate test sets to satisfy par-
ticular structural specification coverage criteria.

The results show that a significant number of require-
ments errors were detected for little additional effort.
All the requirements errors detected using this method
manifested themselves as either non-determinism or in-
completeness of the specification (as would be expected
based on the nature of the checks). On analysis of
these errors we discovered two distinct causes. The first
type of error was the result of a mis-interpretation of
some higher level requirements that resulted in an in-
correct specification with respect to these requirements.
These errors accounted for the greater proportion of to-
tal requirements errors found. The second type of error
was non-determinism or incompleteness as the result of
some omission or ambiguity in the higher level require-

ments. Although these errors were less frequent (poten-
tially because the analysis was not specifically targeted
at validating the higher level requirements) they were
deemed to be very valuable.

A far greater number of tests were generated than
would have been written for a specification of this size
using the traditional process. The number of tests that
can be written are typically restricted by the time it
takes to design, implement and evaluate each test, in
the process described here much of this effort has been
automated, greatly reducing the amount of effort per
test case. When the analysis or test revealed an er-
ror, the time taken to review and rework the error var-
ied according to the nature of the problem. However,
the impression amongst those involved was that the
counter-example information and supporting informal
text greatly contributed to the process of tracking down
the errors in the requirements. It was also noted that as
the case study progressed the number of requirements
errors being detected decreased significantly. The feed-
back from the formal analysis was thought to have influ-
enced the style of requirements specification, i.e. the au-
thor of the requirements was consciously writing speci-
fications to meet the healthiness conditions specified by
the PFS methodology.8

In [18], Knight presented the following criteria for
industrial acceptance of formal methods. Based on the
evidence from the case study and experience of work-
ing with our industrial partners we can now assess the
industrial suitability of our work along similar lines.

1. Formal methods must not detract from the accom-
plishments achieved by current methods

2. Formal methods must augment current methods so
as to permit industry to build “better” software

3. Formal methods must be consistent with those cur-
rent methods with which they must be integrated

4. They must be compatible with the tools and tech-
niques that are currently in use

These criteria emphasise the need to develop formal
methods for the types of practical tools and notations
used in industry and also for formal methods to com-
plement and not preclude existing practices. It is the
authors’ opinion that the work described in this paper
has gone some way to satisfying these criteria, although
admittedly for a particular domain and set of V&V ac-
tivities. This was accomplished by basing the formal

8The final validation of the system will tell whether the require-
ments indeed improved or whether errors were instead being intro-
duced into areas not covered by the healthiness conditions.

analysis and test case generation activities on an auto-
matically generated formal representation of the intu-
itive requirements specifications, written using existing
modelling tools. In addition, the activities performed
here complement methods already in use such as review
and animation. As such they can be seen as natural ex-
tensions to the existing modelling process.

Formal specifications are typically very sensitive to
change. However, due to automation, the formal spec-
ifications can be re-generated and verified whenever
a change in the requirements occurred, at little extra
cost. The intuitive engineering requirements remained
the first class citizens of the process and the standard
interface to the engineers. The ongoing extensions to
CADiZ to provide a ‘silent’ interface via an API will
allow modelling environments such as Statemate to ex-
ploit an intermediate formal representation of the re-
quirements to perform checks and generate tests while
hiding the details of the analysis from the engineer. This
would further encourage an iterative development of the
requirements (i.e. do not pass onto the coding phase un-
til the requirements have been properly validated) and
increase the efficiency of the test generation process.

7. Conclusions and Future Work

In this paper we described our experiences in inte-
grating formal methods into an industrial software de-
velopment process. Intuitive engineering notations were
translated into intermediate formal specifications which
formed the basis of automated proof and test case gener-
ation activities. The high level of automation was made
possible by restricting the work to a particular domain
(discrete engine control requirements) and a tight sub-
set of an otherwise highly expressive formal notation
(Z). The automated analysis and tests allowed a signifi-
cant amount of errors to be detected earlier than would
have been possible had a manual, ad-hoc approach been
taken.

The findings support other work [5, 13, 1] that has
similarly used formal semantics of engineering nota-
tions to facilitate an effective approach to verification.
The work presented here contributes to this field by
showing that general purpose formal analysis tools such
as CADiZ and SMV can be used to support automated
analysis and test generation based on different engineer-
ing notations given a suitable translation from the nota-
tions to a formal specification.

In developing these techniques we have identified the
following generic process for applying formal methods
to engineering notations for automated V&V.

1. Use intuitive Engineering notations with fixed
semantics: Record and maintain the requirements

specifications in notations most suitable for the do-
main and whose semantics can be formally speci-
fied.

2. Couch healthiness conditions as mathematical
constraints: Identify “healthiness properties” that
should be common to all specifications e.g. com-
pleteness and determinism. Based on the formal
semantics of the notations, couch these properties
as mathematical constraints. Automate the transla-
tion if possible.

3. Formally specify the behaviour under test: De-
fine a translation between the original notation and
a formal specification of the properties under test
based on the formal semantics. Automate the trans-
lation if possible.

4. Exploit existing tool-support: Apply a combina-
tion of automated proof, model checking and con-
straint solving to analyse the healthiness properties,
to generate test specifications and to generate test
data.

5. Complement the formal specification and tests
with informal text: To aid the review and docu-
mentation of the analysis and test results, informal
text descriptions should be generated and main-
tained to describe the formal specification of the
healthiness properties and tests.

Ongoing work aims to increase the level of automa-
tion and integration of the formal techniques into exist-
ing specification modelling environments with the de-
velopment of a CADiZAPI. In addition to this, we also
hope to expand the generic process and the toolset to
cover more areas of the verification process. In par-
ticular, the refinement of the intermediate formal spec-
ification into program annotations that can be used to
discharge correctness proofs on the code and the auto-
matic efficient sequencing of test cases to reduce the
amount of effort required to physically run the generated
tests. Other work will concentrate on developing further
the constraint solving abilities of the CADiZ theorem
prover. This will allow a wider range of specifications
and properties to be automatically verified than the cur-
rent system.

8. Acknowledgements

This work was funded by the High Integrity Systems
and Software Centre, Rolls-Royce Plc. The PFS project
is funded by the UK Ministry of Defence. The authors
would also like to thank Steve King for his valuable re-
view comments.

References

[1] Jim Armstrong. Industrial integration of graphi-
cal and formal specifications. Systems Software,
40:211–225, 1998.

[2] Boris Beizer. Software Testing Techniques. Thom-
son Computer Press, 1990.

[3] Sergey Berezin. The SMV web site.
http://www.cs.cmu.edu/˜modelcheck/
smv.html/, 1999. The latest version of SMV
and its documentation may be downloaded from
this site.

[4] John Clark and Nigel Tracey. Solving constraints
in LAW. LAW/D5.1.1(E), European Commission
- DG III Industry, 1997. Legacy Assessment Work-
Bench Feasibility Assessment.

[5] Nancy Day, Jeffrey Joyce, and Gerry Pelletier. For-
malization and analysis of the seperation minima
for aircraft in the north atlantic region. Proceed-
ings of the Fourth NASA Langley Formal Methods
Workshop, pages 35–49, September 1997.

[6] David Dill and John Rushby. Acceptance of formal
methods: Lessons from hardware design. IEEE
Computer, 29(4):23–24, April 1996.

[7] Andy Galloway, Trevor Cockram, and John Mc-
Dermid. Experiences with the application of dis-
crete formal methods to the development of engine
control software. Proceedings of DCCS ’98. IFAC,
1998.

[8] John B Goodenough and Susan L Gerhart. To-
wards a theory of test data selection. IEEE Trans-
actions On Software Engineering, 1(2):156–173,
June 1975.

[9] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Program-
ming, 8:231–274, 1987.

[10] David Harel, Hagi Lachover, Amnon Naamad,
Amir Pnueli, , Michael Politi, Rivi Sherman,
Aharon Shtull-Truaring, and Mark Trakhenbrot.
Statemate, a working environment for the develop-
ment of complex reactive systems. IEEE Transac-
tions On Software Engineering, 16:403–414, 1988.

[11] David Harel and Amnon Naamad. The State-
mate semantics of statecharts. IEEE Transac-
tions On Software Engineering And Methodology,
5(4):293–33, Oct 1996.

[12] Kathryn L. Heninger. Specifying software require-
ments for complex systems: New techniques and
their applications. IEEE Transactions on Software
Engineering, 6(1), 1980.

[13] Constance Hietmeyer, Bruce Labaw, and Daniel
Kiskis. Consistency checking of SCR-style re-
quirements specifications. In Proceedings of Inter-
national Symposium on Requirements Engineer-
ing, pages 56–63, 1995.

[14] M.G. Hinchey and J. P. Bowen (editors). Applica-
tions of formal methods. Prentice-Hall, 1995.

[15] C. Michael Holloway and Ricky W. Butler. Imped-
iments to industrial use of formal methods. IEEE
Computer, 29(4):25–26, April 1996.

[16] Information Processing Ltd., Bath, UK. AdaTEST
95 User Manual, June 1997.

[17] Steve King, Jonathon Hammond, Rod Chapman,
and Andy Pryor. The value of verification: Pos-
itive experience of industrial proof. In J. Wing,
J. Woodcock, and J. Davies, editors, FM’99: For-
mal Methods, volume 1709 of Lecture Notes in
Computer Science, pages 1527–1545. Springer-
Verlag, September 1999.

[18] John Knight, Colleen DeJong, Matthew Gibble,
and Luis Nakano. Why are formal methods not
used more widely? Proceedings of the Fourth
NASA Langley Formal Methods Workshop, pages
1–12, September 1997.

[19] John McDermid, Andy Galloway, Simon Burton,
John Clark, Ian Toyn, Nigel Tracey, and Samuel
Valentine. Towards industrially applicable formal
methods: Three small steps, one giant leap. Pro-
ceedings of the International Conference on For-
mal Engineering Methods, October 1998.

[20] Erich Mikk, Yassine Lakhnech, Carsta Petersohn,
and Michael Siegel. On the formal semantics of
statecharts as supported by Statemate. Proceedings
Of The Second Northern Formal Methods Work-
shop, July 1997.

[21] Thomas J Ostrand and Marc J Balcer. The
category-partition method for specifying and gen-
erating functional tests. Communications of the
ACM, 31(6):676–686, June 1988.

[22] Martyn Ould. Testing - a challenge to method and
tool developers. Software Engineering Journal,
39:59–64, March 1991.

[23] RTCA. RTCA DO-178B, Software Considerations
in Airborne Systems and Equipment Certification,
1992.

[24] J. M. Spivey. The Z Notation: A Reference Manual,
second edition. Prentice Hall, 1992.

[25] Phil Stocks and David Carrington. Test template
framework: A specification-based case study. Pro-
ceedings Of The International Symposium On Soft-
ware Testing And Analysis (ISSTA’93), pages 11–
18, 1993.

[26] I. Toyn. Formal reasoning in the Z notation using
CADiZ. 2nd International Workshop on User In-
terface Design for Theorem Proving Systems, July
1996.

[27] Ian Toyn. A tactic language for reasoning about
Z specifications. In Proceedings of the Third
Northern Formal Methods Workshop, Ilkley, UK,
September 1998.

[28] Ian Toyn. The CADiZ web site.
http://www.cs.york.ac.uk/˜ian/cadiz/, 1999.
The latest version of CADiZ and its documenta-
tion may be downloaded from this site.

[29] Sam Valentine. Modeling Statemate Statecharts In
Z (DCSC/TR/98/15). Dependable Computer Sys-
tems Centre (DCSC), University of York, October
1998.

Integrating Z and Cleanroom

Allan M. Stavely
Computer Science Department

New Mexico Tech

Abstract

We describe an approach to integrating the Z speci-
fication notation into Cleanroom-style specification and
verification. In a previous attempt, a group at IBM used
formal refinement of the Z in their development. They
concluded that this was not cost-effective in a commer-
cial environment, and the attempt was not judged suc-
cessful. The current approach avoids formal refinement,
and instead begins by converting the Z to a fully con-
structive form, expressing all state changes using an
assignment notation. The development then proceeds
in Cleanroom style, with sections of the Z specifica-
tion simply distributed among the program components
to serve as their specifications. In a pilot project, this
approach was found to work quite well, with develop-
ment proceeding smoothly and predictably as normally
expected with Cleanroom methods.

1 History of the problem

In the early 1990s, a group of technical staff at the
IBM laboratory at Hursley Park (near Winchester, Eng-
land) attempted to integrate two software engineering
technologies which IBM had previously used separately
with considerable success: the Z specification notation
and the Cleanroom method.

The Z notation [15] [6] [13] [17] [18] is based on set
theory and other basic elements of discrete mathematics,
and incorporates novel structuring constructs (schemas
and the schema calculus). Z technology also includes
methods for the formal refinement of specifications into
designs and code.

The core of the Cleanroom method [10] [8] [16]
is formal or semiformal specification, and correspond-
ing verification done by a development group in review
meetings. Other elements of the method include no-
tations and techniques for stepwise refinement, testing
based on expected usage patterns, statistical analysis of
test results to predict product quality, and incremental

development.
IBM had had considerable experience with both tech-

nologies. The Cleanroom method was developed largely
at IBM, by Harlan Mills and his colleagues in the Fed-
eral Systems Division. By the time of the Hursley ex-
periment, it had been used successfully on a number
of industrial-sized projects at IBM and elsewhere. The
results were striking: very low levels of defects in the
products, with no net loss and often a net gain in pro-
ductivity [8] [3].

IBM had just finished a substantial development
project at Hursley using Z, in collaboration with its de-
velopers at Oxford University [5]. The project was a
major new release of the CICS transaction processing
system: 268,000 lines of new and modified code, of
which 37,000 lines were specified and designed using
Z and another 11,000 lines were partially specified in Z.
For the parts produced using Z, IBM reported a higher
percentage of defects eliminated early in the develop-
ment, a lower level of defects in the final product, and
an estimated 9% reduction in development costs. IBM
and Oxford were jointly given the Queen’s Award for
Technological Achievement for 1992 on the basis of this
work.

The CICS group at Hursley hoped that Z and Clean-
room methods could be used together, and would com-
plement each other to produce products of even higher
quality than with either separately. The approach that
they took was to write specifications in Z initially; to
proceed with formal refinement steps as normally done
in Z; to write the correctness criteria for these refine-
ments as mathematical theorems; and to prove these the-
orems in review meetings, as normally done in Clean-
room.

The experiment was not judged a success. In partic-
ular, the group found it too hard to do the formal refine-
ment from Z into code. The postmortem [12] concluded
that “it is not cost-effective in a commercial software
environment to do even semi-formal refinement without
machine assistance” (which was not available).

Despite this discouraging result, we felt that there

was much to be gained if Z and Cleanroom methods
could be integrated successfully. In the following, we
describe a quite different approach. We avoid formal
refinement in Z altogether, and instead begin by trans-
lating Z specifications into a form that more closely re-
sembles Cleanroom-style specifications. From there, the
development proceeds in Cleanroom style, but retaining
fragments of Z notation where appropriate. We found
that, using this approach, the Z notation can complement
Cleanroom methods quite effectively.

2 Z and Cleanroom specification styles

The Z notation is well suited to expressing the spec-
ification of a system as a whole, or of major parts of
a system. It provides a great deal of useful mathemat-
ical vocabulary, and the vocabulary of discrete mathe-
matics in particular, which can be used very effectively
to specify aspects of an information-processing system
at a high level. Furthermore, it provides the schema
notation and the schema calculus, by means of which
many different aspects of a specification, each perhaps
derived from a different requirement of the system, can
be expressed separately and then combined into a single
specification.

The Cleanroom method, on the other hand, provides
relatively little built-in notation. Indeed, one of its
strengths is that many kinds of notation, from a wide
variety of domains and at many levels of formality, can
be imported into it and used in its specifications. What it
does provide is, in particular, a straightforward method
of placing specifications on the lower-level components
of a program, down to the level of the control construct
or statement, and verifying that these components sat-
isfy their specifications.

It would seem to be a natural idea, then, to begin
by writing the top-level specification of a system using
Z, and then to proceed with the development in Clean-
room fashion, distributing the Z specification among
the program components and verifying those compo-
nents against the specification fragments using Clean-
room protocols in review meetings.

However, there is a gap that must be bridged before
the Z notation can be incorporated into Cleanroom-style
specifications. This is because there are fundamental
differences in the styles of the specifications of Z and
Cleanroom.

The Z notation is based on predicates, which express
preconditions and postconditions on operations, invari-
ants on data, and other assertions and constraints on the
data objects and inputs and outputs of a system. In par-
ticular, the specification of an operation defines a rela-
tion among inputs, outputs, previous values of state vari-

ables, and new values of those variables.
A fundamental property of Z is that such specifica-

tions may be nonconstructive: they may express prop-
erties that outputs and new values of variables must sat-
isfy, without giving any clue as to how these values can
be calculated from inputs and previous values of vari-
ables. In fact, specifications may even be nondetermin-
istic: they may not constrain each output and updated
variable to a unique value.

Here is an example which is both nonconstructive
and nondeterministic, from the specification of a text-
processing system: [6, p. 172]:

[CHAR]
TEXT == seq CHAR

Format
t; t0 : TEXT

words t0 = words t
8 l : ran (lines t0) � #l � width

In the specification of an operation in Z, the name of
a state variable is “decorated” with a 0 symbol to refer
to its new value; the undecorated variable name refers
to its previous value. (Input variables are decorated with
? and output variables with !.) Thus, this schema says
that a Format operation leaves the sequence of words
in t unchanged and that each line of t after the opera-
tion must be no longer than width (the functions words
and lines and the constant width are defined elsewhere).
The specification says nothing about how to achieve this
result and, in fact, there will usually be many ways of
dividing t into lines that will satisfy this specification.

Z practitioners see the ability to write nonconstruc-
tive and nondeterministic specifications as an advantage:

Non-deterministic operations are important
because they sometimes allow specifications
to be made simpler and more abstract [15,
p. 131].

Nonconstructive specifications achieve ex-
pressivity and brevity at the expense of exe-
cutability : : : they leave the programmer free
to choose among different implementation
strategies [6, p. 38].

In the Cleanroom method, on the other hand, the gen-
eral rule is that specifications are both deterministic and
constructive. Specifications are written in the “func-
tional” style [9], in which each operation, control con-
struct and statement in a program is viewed as comput-
ing a function on the program’s state:

X := f (X)

Here X is a state vector that encompasses all of the
program’s state variables, including its input and output
streams. Specifications are written in the form of in-
tended functions which explicitly give values for every
state variable which changes value. The usual notation
is the concurrent assignment, such as the following:

[sum; i; trend :=
sum + a[i]; i + 1; (sum + a[i])=(i + 1)]

A variant is the conditional concurrent assignment,
which specifies a state change by cases, such as the fol-
lowing:

[i > 0 ! trend := sum=i
j i = 0 ! sum; trend := 0; trend0]

Each case has a precondition and a concurrent assign-
ment which is the state change to be performed when the
precondition is satisfied; the computation is undefined
whenever no precondition is satisfied.

The usual situation is that the preconditions of a con-
ditional concurrent assignments are mutually exclusive
(there is no state in which any two are both true) and
that the right-hand side of each concurrent assignment
contains only single-valued expressions which are obvi-
ously computable. In this case, the specification is deter-
ministic and constructive. Exceptions are occasionally
made, and occasionally a specifier will depart from this
notation entirely. However, the rest of the Cleanroom
method, and the verification in particular, will usually
proceed more smoothly if the above conventions are fol-
lowed. One reason for this is that a common manipula-
tion in verification is to substitute the result of a compu-
tation into the specification of a following computation
and then simplify.

3 The transition from Z to Cleanroom

The first step in our adaption of a Z specification to
Cleanroom-style development and verification, then, is
to transform the Z into a deterministic and constructive
specification, so that it can be expressed using the in-
tended functions required by the Cleanroom method. It
might seem that this would be a nontrivial task, requir-
ing a great deal of effort and introducing many opportu-
nities to make mistakes that will jeopardize the success
of the project.

However, in our experience thus far, we find that the
job is usually not as hard as one might think. This is
largely because many parts of typical Z specifications
are already deterministic and constructive. In particular,
we find that many Z predicates are of the form

v1 = e1 ^ v2 = e2 ^ : : :

or

P ^ v1 = e1 ^ v2 = e2 ^ : : :

or

(P1 ^ v11 = e11 ^ v12 = e12 ^ : : :) _
(P2 ^ v21 = e21 ^ v22 = e22 ^ : : :) _ : : :

where each v is a changed state variable or an output
variable (i.e., an variable decorated with 0 or !) and such
variables do not occur in any P or e, and where (in the
third form) the Pi are mutually exclusive. Such pred-
icates define computations that are clearly both deter-
ministic and constructive, assuming that each P and e is
single-valued and there is an obvious way to compute
it. Furthermore, it is trivially easy to rewrite any such
predicate in conditional-concurrent-assignment form. In
fact, they are essentially in that form already, except for
the symbols used.

Fortunately, such forms are natural to use in many
situations in Z specifications, and Z users seem to use
them rather commonly. In 28 case studies presented in
six prominent Z books [15, ch. 1] [4, parts B–D] [6,
ch. 16–25] [13, ch. 8] [17, ch. 15 and 20–23] [18, ap-
pendix A], over 67% of the 353 schemas which imply
state changes or output are already in one of the above
forms, once the schemas that are defined by including
or combining other schemas are expanded out into their
full forms. Another 6% contain instances of (for exam-
ple) the new value of one variable being defined in terms
of the new value of another, in contexts like

a0 = f (a) ^
b0 = g(a0)

in which the departure from the above forms can eas-
ily be eliminated by an obvious substitution. Again, the
translation to conditional-concurrent-assignment form is
straightforward.

We could proceed, then, by translating all of the
specifications of operations directly from Z predicates
to conditional concurrent assignments, routinely in the
easy cases and using more complex transformations
in the other cases. However, to make the transition
smoother, we devised an intermediate form which com-
bines characteristics of both notations. It is very much
like standard Z — in fact, it can be considered a non-
standard dialect of Z — except that all state changes are
specified explicitly and constructively.

Here are the principal differences between this nota-
tion and standard Z.

� State changes are written in the form

x := E

This is equivalent to the standard Z

x0 = E

but the change in notation emphasizes the explicit,
constructive definition of the state change. The
same assignment notation is used to specify the
computation of outputs.

� Every change to a state component is specified in
this way; it is implied that no other state compo-
nent changes its value. With this convention, all
assertions of the form

x0 = x

are omitted as redundant from schemas that specify
state changes.

There are no implicit changes to one state com-
ponent induced by changes to another state com-
ponent and constraints between them. All state
changes are written out explicitly.

� In the same spirit, where it is asserted that part of a
structured state component is changed, it is implicit
that the rest of the component remains unchanged.
In particular, where the state component is a map-
ping (in Z represented as a function), a change to its
value on one element of its domain can be written
in the form

f a := E

If this is the only change to f that is specified in
the schema in which this appears, it is implied that
f remains unchanged otherwise, and the above is
equivalent to the standard Z

f 0 = f � f a 7! E g

where � is the “override” operator.

More than one change to the same function can be
specified:

f a1 := E1 ^ f a2 := E2

means

f 0 = f � f a1 7! E1; a2 7! E2 g

which, of course, is well-defined (i.e., f 0 is still a
function) only if a1 6= a2 or E1 = E2.

A change to a (curried) function of two arguments
can be written as

f a b := E

which (if no other changes to f are specified in the
schema in which this appears) is equivalent to

f 0 = f � f a 7! ((f a)� f b 7! E g) g

and so on for functions of more arguments.

� Since the syntax x := E is really a predicate, it can
appear anywhere a predicate can appear, such as
within the scope of a quantifier. An example is

8 x : T j x 2 S �
f x := a

which means

f 0 = f � f x : T j x 2 S � x 7! a g

� The symbols � and � are now superfluous in most
places and may be omitted.

� All computations of new states and outputs appear
only in contexts which are unconditional, or in con-
ditional structures (using _ and ^) with mutually
exclusive conditions.

Many of these notation conventions are similar to
constructs in the notation of the B method [19], although
that notation is more restrictive than AZ in a number of
ways.

Since state changes are specified in the form of as-
signments, we tentatively call this variant of the Z nota-
tion “Assignment Z”, or AZ. (We considered the name
“Constructive Z”, but this name is already in use with a
somewhat different meaning [11].) We present AZ not
as another formal specification notation, but merely as
an informally-defined intermediate form between Z and
conditional concurrent assignments.

Where the Z specifications are not already construc-
tive, we transform them into a constructive form as we
rewrite them in AZ notation. For example, we would
rewrite

Pop
stack; stack0 : seq Item
x! : Item

stack = hx!i a stack0

as

Pop
stack : seq Item
x! : Item

x! := head stack
stack := tail stack

Often, as here, making a state change constructive is
rather easy, but it can require considerable manipulation.

There is sometimes more than one way to express
the constructive version, and whatever choice is made
will usually suggest a design or implementation pos-
sibility more strongly than the nonconstructive version
did. Similarly, where the specification is nondetermin-
istic, making it deterministic typically involves either
making arbitrary choices as to the result that is speci-
fied, or making choices influenced by design or imple-
mentation considerations. An example is an allocation
of a resource from a set of numbered resources:

Allocate
free : F N
allocated0 : N

allocated0 2 free
free0 = free n allocated0

(Here F means “finite set of” and N denotes the natu-
ral numbers.) As we convert this to AZ form, we might
make it deterministic by arbitrarily choosing the free re-
source with the minimum number:

Allocate
free : F N
allocated : N

allocated := min free
free := free n fmin freeg

Another way of resolving the nondeterminism would
be to define free to be a sequence rather than a set, and
choosing the first element of the sequence every time:

Allocate
free : seqN
allocated : N

allocated := head free
free := tail free

Clearly, this version encourages a different implementa-
tion. It is important to realize that the transformations
that we perform to make the specification constructive
and deterministic are not just changes in notation, but

are true development steps, and may involve nontrivial
and significant design decisions.

It is probably not necessary to be too dogmatic about
removing all nonconstructive and nondeterministic as-
pects of the specification at this stage. Consider this ex-
ample:

DisplayPeople
knownPeople : F PERSON
people! : F PERSON

people! = knownPeople

This is reasonable Z, but of course if a set is displayed
as an output, it must be displayed in some order. A pos-
sible conversion to AZ might be:

DisplayPeople
knownPeople : F PERSON
people! : seq PERSON

people! = alphabeticalSort knownPeople

where alphabeticalSort denotes sorting by name in
phone-book order. One might object that this is still both
nonconstructive and nondeterministic, since it does not
suggest how the sorting is to be done, and it may al-
low more than one outcome if more than one person can
have the same name. But any other way of writing this
specification is likely to be more complicated and less
satisfactory. Furthermore, it is obvious that any compe-
tent programmer can create an implementation that will
satisfy it. In such situations the pragmatic thing to do
may be to allow specifications such as this one, although
we should do so only after careful consideration.

4 A pilot project

To try out the techniques presented above, we at-
tempted use them on a development project of modest
size. As it happened, we had a project that we were al-
ready planning to undertake.

The project was to develop a “rehearsal scheduler’s
assistant”: a program to help with the planning and
scheduling of the rehearsals and other preparation for
a theatrical production. The central job to be done is to
manage the interacting schedules of many activities and
many people. We had a real client, Doug Dunston, the
faculty member in charge of the music program in our
college. (The project is described in somewhat fiction-
alized form in section 11.3 of [16].)

The first step of the development, after discussing re-
quirements with the client, was to prepare a specification

in standard Z. As is common practice with Z, the speci-
fication took the form of a document, with sections of Z
interspersed with explanatory text in English. The spec-
ification contained 43 schemas, and 16 other Z sections
containing definitions of various kinds.

The specification document contained one other im-
portant specification notation: color pictures of the
screens and other components of the graphical user in-
terface (GUI). Here is an example:

Menu:

change schedule

delete this person

view or change activities

view conflicts

screen = personScreen

4 5 7 8 9 102 3 6 11

Sun

Mon

Tue

Wed

Sat

Thu

Fri

commentary currentPerson:

1pm

Can lead chorus rehearsals when necessary.

"Stewpot".

John Shipman
name currentPerson:

Schedule of

envelope sat

normal

week of March 19
date:

schedule!:

ScheduleSelector:

activities

other obligations

conflict

free

12 1am

We used pictures like these to include in the specifi-
cation a general idea of what the GUI would look like.
However, we adopted the convention that the pictures
would represent only an approximation to the appear-
ance of the interface, which might vary somewhat ac-
cording to the eventual implementation. Colors and di-
mensions (for example) might be slightly different from
the way they appear in the pictures, and there might
be implementation-dependent features not shown in the
pictures, such as additional ways to move from one
screen to another.

On the other hand, some aspects of the pictures are
quite specific. In particular, some of the elements of
each picture are tied to the Z specifications through la-
beling conventions. In the picture, an annotation of
the form someName: (which appears in a distinguished
color, magenta, when the specification is printed or dis-
played in color) is not to appear in the actual GUI as
displayed, but indicates that the corresponding part of
the GUI corresponds to the construct of the same name

in the Z specification. If there might be any doubt as to
what part of the display is being referred to, a box of the
same color is drawn around the relevant part; again, this
will not actually appear in the GUI.

Here is the Z schema that corresponds to the above
picture:

PersonScreen
PersonData
ScheduleSelector
PersonScheduleDisplay
Menu[SCREEN]

screen = personScreen

preselected! := normal
date = today

menuChoices! :=
f editPersonScreen 7!

“view or change activities”;
personScheduleScreen 7!

“change schedule”;
showConflictsScreen 7!

“view conflicts”;
deletePersonScreen 7!

“delete this person”g
screen := chosenItem?

The annotation screen = personScreen in the picture
indicates that screen has the value personScreen when
what the user sees is the screen shown in the picture.
The variables date and preselected! are defined in the
schema ScheduleSelector; preselected! defines which of
the two selector buttons is initially shown as selected.
Whenever a schema defines a GUI component, we de-
fine informally in the accompanying text how the Z com-
ponents relate to what the user sees and can manipulate.

We adopted several other conventions to reduce the
amount of repetitive detail in the specification. For ex-
ample, in many places in the GUI there is a box in which
the user can fill in or edit a value. Wherever a picture
contains such a box labeled with the name (for example)
x, and x is a variable of type T, we treat that annotation
as implicitly introducing a Z schema of the form

Edit x
displayed x! : TEXT
entered x? : TEXT
x : T

displayed x! := TtoTEXT x

x := TEXTtoT entered x?

where TtoTEXT and TEXTtoT are appropriate conver-
sion functions. The box labeled date: is an example

of this; the schema personScreen also specifies that the
value initially displayed for date is today’s date.

The specification document, then, contains English
text, Z notation, and pictures, all interrelated. It should
be apparent that some parts of the specification are for-
mal and other parts are quite informal. In all, the docu-
ment is 42 pages long.

The next step, after meeting again with the client to
discuss that specification and obtain his approval, was
to prepare another version of the document in which the
parts of the Z sections were rewritten in AZ form. This
turned out to be quite easy in most places, especially
since most of the state changes were specified in such a
way that the translation was trivial, as discussed in the
previous section. In many cases, the resulting specifica-
tions turned out to be considerably simpler than the orig-
inal, largely because of the AZ convention for express-
ing changes to components of structured objects. For ex-
ample, the specification used curried functions like the
following in many key places:

SCHEDULESTATUS ::=

free j booked j otherObligations j conflict
DAYSCHEDULE ==

TIME 7! SCHEDULESTATUS
WEEKSCHEDULE ==

DAYOFWEEK ! DAYSCHEDULE

NormalSchedules
: : :
People
normalSchedule :

PERSON 7! WEEKSCHEDULE

: : :

This was a natural way of constructing
normalSchedule, especially since we sometimes
wanted to refer to the whole weekly schedule of a
person, sometimes for that schedule on a particular day,
and sometimes to that schedule at a particular time. But
then specifications of state changes like the following
became complex and tedious:

normalSchedule0 = normalSchedule �
f currentPerson 7!
(normalSchedule currentPerson)�

f day 7!
(normalSchedule currentPerson day)�

f t 2 possibleTimes day j
from � t < to �

t 7! selected? g g g

The AZ form of this is much more straightforward:

8 t 2 possibleTimes day j from � t < to �
normalSchedule currentPerson day t

:= selected?

In determining what needed to be rewritten to make
it constructive, we were guided by pragmatic considera-
tions. For example, the original specification contained
a number of state changes specified using set compre-
hensions, in forms such as

result := fa 2 S j P(a)g

But in each such case, S was a finite set and so, in
principle at least, the set of its elements satisfying P
could be constructed by a simple-minded enumeration
of the set, testing each element. Indeed, for this reason a
mathematician would probably consider such an expres-
sion quite constructive, and we judged all such specifi-
cations to be “constructive enough” for our purposes. In
fact, in the implementation, each such set turned out to
be reasonably small, and so this is exactly how almost
every such state change was actually implemented.

For a number of reasons, including portability (the
program was to be developed on our Linux machines
but would eventually run on Dr. Dunston’s Macintosh),
we chose the Python programming language and the Tk-
inter GUI library for the implementation.

We found it easy to implement many parts of the
AZ specification using Python constructs, in ways that
so obviously matched the specification that verifica-
tion was hardly necessary. This was especially true of
state changes that called for modifying values of func-
tions. We implemented the function normalSchedule,
for example, as a dictionary indexed by Person and
Activity objects, containing lists indexed by numbers
representing days of the week, where those lists con-
tained dictionaries indexed by Time objects and contain-
ing ScheduleStatus objects. Thus, for example, the im-
plementation of the state change specified by

8 t 2 possibleTimes day j from � t < to �
normalSchedule currentPerson day t

:= selected?

turned out to be simply

for t in possibleTimes(day):
if fromTime <= t < toTime:

normalSchedule[currentPerson] n
[day][t] n

= selected

which is essentially identical to the specification.
We used one other significant piece of software en-

gineering technology in the project: a form of “literate

programming” [7]. This means that the program is pre-
pared and presented in the form of a document, with
explanatory text accompanying each section of program
code. Thus the program and its documentation are in-
tegrated, and stored in a single file. There are software
tools that process that file either to strip out and order
the code sections for compilation and execution, or to
format the document for viewing or printing.

In the usual kind of literate programming, the code
fragments may appear in the document in any order, but
the author must use markup commands to define their
ordering and nested structure in the final program. We
adopted a much more “lightweight” approach, in which
the code fragments appear in the program in the same or-
der in which they are presented in the document. This is
reasonable with Python, in which the order of elements
in a program is relatively unconstrained. And it means
that the program that strips out the code fragments for
execution does not need to do any reordering, which
made it a very simple program. Even more important,
it means that the programmer does not need to include
markup to structure the program fragments. In fact, the
only extra markup necessary is a pair of commands de-
fined in the markup language (LATEX in our case) to mark
the beginning and end of a code fragment.

With very little extra effort, then, we were able to
maintain the code and a description of it as a readable
document. In many places we also included sections of
Z and pictures of the GUI, cut-and-pasted from the spec-
ification documents. The result is a document very simi-
lar to those documents in style and appearance, but with
code sections added. Each code section is accompanied
by commentary and, in many cases, the Z and pictorial
specifications from which the code was derived.

In many places we also extracted fragments of Z from
the specification and incorporated them into intended
functions in the code fragments. Here is an example:

V

def emptyDaySchedule(d):
[returned value := a dictionary

f t 2 possibleTimes(d) � t 7! free) g]
result = f g
for t in possibleTimes(d):

result[t] = free
return result

By the way, the annotation “V” in the corner of the
box indicates that this section of code has been verified.
An annotation “VT” would indicate that it had also been
tested. We used such annotations to keep track of the

status of each fragment directly in the program docu-
ment during the development, and we found this very
helpful.

We did not follow Z protocols for formal refinement
at all. The implementation was constructed using ordi-
nary programming skills, as well as Cleanroom-based
methods in which intended functions are implemented
in a stepwise manner in terms of code and lower-level
intended functions [16, ch. 5]. We constantly used the
structure of the Z specification as a guide, and this made
many parts of the implementation almost trivial to con-
struct.

We verified both the translation of the Z to AZ,
and the program code developed from the AZ. Unfor-
tunately, we were unable to adhere strictly to Clean-
room methods in doing this. Cleanroom is inherently
a group process; in particular, verification is done in
review meetings, with the author and colleagues dis-
cussing each correctness criterion and examining the
program for other aspects of quality. The goal is to dis-
cover and eliminate as many defects as possible while
attempting the verification. Normally this requires a
group of at least three people, since each person often
notices defects that the others miss.

But only one other person trained in Cleanroom
methods was available at the time, and the amount of
time that he had available was quite limited. There-
fore, parts of the program were verified in a two-person
group, and some parts were done strictly as a solo effort.
We found that verification under these circumstances
was far less reliable than normally expected with Clean-
room methods, which typically achieve a level of defects
of three per thousand lines of code or better before first
execution [8] [3].

To add to our difficulties, we were somewhat unfa-
miliar with the Python language and the Tkinter library,
and made a number of minor mistakes in usage, espe-
cially early in the project. Since Python is an interpreted
language, the mistakes that escaped our notice during
verification were not caught in compilation, but in first
execution.

To attempt to compensate, we eventually developed
an alternate protocol. The project plan called for the pro-
gram to be developed in rather substantial increments, as
is normal with the Cleanroom method. We divided each
of these into a number of very small increments, each
adding perhaps only one simple new feature to the pro-
gram; these increments ranged in size from about thirty
to two hundred new and changed lines.

After each of these increments was coded, we in-
spected it several times, using a checklist and checking
different aspects each time. We checked such things as
points of syntax and usage which had caused us prob-

lems before, matching of each function and method call
against its definition (comparing both intended functions
and number and types of parameters), and correspon-
dence of intended functions with the Z in the specifi-
cation document. Finally we inspected for correctness
of each section of code with its intended functions. In
some cases, as in the normalSchedule example above,
we judged the code obviously correct “by inspection”;
in other cases we carried through more detailed correct-
ness arguments, mentally or on paper [16]. We caught
and eliminated many defects by means of these inspec-
tions, about four defects per hundred lines on average.

Each increment was then integrated into the program;
thus we were, in effect, “growing” the program gradu-
ally, as advocated by Brooks [1, p. 18]. At each integra-
tion step we ran a few cursory tests to execute each new
piece of code for the first time, and many more defects
showed up immediately. The defect density on first exe-
cution was about five per hundred lines on average, not
nearly as good as normally expected with Cleanroom
methods. Thus, our one-person inspection protocol does
not come close to competing with a full Cleanroom-style
verification review by this measure.

Fortunately, this had little effect on the effectiveness
of the development! Almost all of the defects that sur-
vived the inspections were caught on first execution and
were simple oversights: typographical errors, mistakes
in punctuation, mistakes in names of variables, omitted
initialization, and the like. Each took only a few minutes
to track down and fix. There were no deep algorithm
flaws, no subtle bugs which would cause malfunctions
only rarely, and no places in which we had implemented
algorithms that would do something quite different from
what was specified. This is typical of what normally
happens in a Cleanroom-style development: the really
nasty bugs are the ones that specification and verification
seem to be most effective at preventing or eliminating.

Most important for the subject of this paper, the entire
development went very smoothly. At no time did we feel
that the mixture of notation was a hindrance or added ex-
cessive complexity to the process. On the contrary, we
felt that it was definitely helpful to have a Z specification
to use a a basis for the development, and that specifying
the program using the vocabulary of discrete mathemat-
ics right from the beginning probably made the design
cleaner than it would otherwise have been. We also felt
that using Cleanroom-style intended functions and step-
wise refinement definitely contributed to the quality of
the product, as did inspections, imperfect as the latter
were. These are subjective judgments for the most part,
of course, but we think they are justified.

At the time of writing, the third of the five major in-
crements called for in the project plan has been com-

pleted, resulting in 1409 nonblank, non-comment lines
of code in the Python language. (We estimate that sev-
eral times as many lines would have been needed in a
lower-level language such as C or Java.) We found only
five defects in further testing; this means that the defect
density that we obtained after inspection and first test
during integration is comparable to the defect density
normally obtained after verification in Cleanroom.

Dr. Dunston has begun to use the program experi-
mentally, and intends to put it into full production use
for his next musical comedy. By that time the remain-
ing increments will be constructed and installed. Mean-
while, we have begun to use the program in our own
work, to help schedule the activities of the staff of an in-
troductory computer science course (lecturers, teaching
assistants, tutors and graders) around all of their other
obligations. The program has been quite helpful with
this. As of the time of writing, no further defects have
been found in the program.

5 Conclusions

We consider that the integration of Z and Cleanroom,
as described above, was successful. We believe that the
use of specification via pictures and of “lightweight”
literate programming contributed to the success of the
project as well. Results obtained from one project of
this size are not conclusive, of course, but all indications
are positive thus far.

We definitely intend to use similar combinations of
technologies in future projects, and are eager to try them
on substantially larger projects. Since Z and Cleanroom
have been used separately on projects of substantial size
with considerable success, we see no reason why the
same should not be true when they are used together,
but only actual experience will tell us with certainty.

Beyond this, we believe that our results confirm and
support several ideas already noted by other writers and
researchers regarding the way to use formal methods
most effectively. First, formal methods are not mono-
lithic: it is quite possible to use some parts or aspects
of a method without using all of the method. For exam-
ple, it makes perfect sense to write specifications in Z
even if one has no intention of using the accompanying
methods for formal refinement, and doing this seems to
be rather common among Z users.

Similarly, it is perfectly reasonable to use more than
one formal method or notation in a project, according to
which is most suitable for each part of the project. A
notable example of this was the development project for
the CDIS air traffic control display system [2], which
successfully used a variety of formal notations: VDM,
VVSL, CSP and CCS, as well as data-flow diagrams and

finite-state machines.
Finally, full formality is not only not necessary to ob-

tain the benefits of formal methods, but is frequently not
even productive or cost-effective. In the postmortem to
the Hursley experiment [12, p. 293], Mark Pleszkoch
of the IBM Cleanroom Software Technology Center is
quoted as saying:

I believe that the key to applying Cleanroom
in a cost-effective, highly productive manner
is to not force developers to go to a level of
formality beyond their needs (and abilities),
while at the same time not losing the bene-
fits of precise documentation that makes clear
what each piece of code is designed to do.

A number of other writers have been expressing sim-
ilar opinions in recent years (see, e.g., [14] and [2,
pp. 74–75]). The general principle is that there is an ap-
propriate level of formality for every situation, and more
rigor is not always better. If this is not yet the consensus
of the formal methods community, perhaps it eventually
will be.

Acknowledgement: We are indebted to Steve Powell
of IBM at Hursley for many thoughtful comments and
suggestions.

References

[1] Frederick P. Brooks, Jr. “No silver bullet: Essence
and accidents of software engineering.” Computer
20, 4, pp. 10–19, April 1987.

[2] Anthony Hall. “Using formal methods to develop
an ATC information system.” IEEE Software 13, 2
(March 1996), pp. 66–76.

[3] P. A. Hausler, R. C. Linger and C. J. Trammell.
“Adopting Cleanroom software engineering with
a phased approach.” IBM Systems Journal 33, 1
(1994), pp. 89–109.

[4] Ian Hayes, ed. Specification Case Studies. London:
Prentice Hall International (UK) Ltd, 1987.

[5] Iain Houston and Steve King. “CICS project re-
port: Experiences and results from the use of Z
in IBM.” In VDM ’91: Formal Software Devel-
opment Methods, pp. 588–596. Berlin: Springer-
Verlag, 1991.

[6] Jonathan Jacky. The Way of Z. Cambridge, Eng-
land: Cambridge University Press, 1997.

[7] Donald E. Knuth. “Literate programming.” The
Computer Journal 27, 2 (May 1984), pp. 97–111.

[8] Richard C. Linger. “Cleanroom process model.”
IEEE Software 11, 2 (March 1994), pp. 50–58.

[9] Harlan D. Mills. “The new math of computer pro-
gramming.” Commun. ACM 18, 1 (January 1975),
pp. 43–48.

[10] Harlan D. Mills, Michael Dyer and Richard C.
Linger. “Cleanroom software engineering.” IEEE
Software 4, 5 (September 1987), pp. 19–24.

[11] Seyed-Hassan Mirian-Hosseinabadi and Raymond
Turner. “Constructive Z.” J. Logic Computat. 7,
96-48 (1997), pp. 49–70.

[12] Glyn Normington. “Cleanroom and Z.” In Z
User Workshop, London 1992. London: Springer-
Verlag, 1992.

[13] Ben Potter, Jane Sinclair and David Till. An Intro-
duction to Formal Specification and Z (second edi-
tion). Hemel Hempstead, England: Prentice Hall
Europe, 1996.

[14] Hossein Saiedian, ed. “An invitation to formal
methods.” Computer 29, 4 (April 1996), pp. 16–30.
See particularly the contributions of Jones, Jack-
son and Wing, and Lutz.

[15] J. M. Spivey. The Z Notation: A Reference Man-
ual (second edition). Hemel Hempstead, England:
Prentice Hall International (UK) Limited, 1992.

[16] Allan M. Stavely. Toward Zero-Defect Program-
ming. Reading, Mass.: Addison Wesley Longman,
1999.

[17] Jim Woodcock and Jim Davies. Using Z: Specifi-
cation, Refinement and Proof. Hemel Hempstead,
England: Prentice Hall Europe, 1996.

[18] J. B. Wordworth. Software Development with Z:
A Practical Approach to Formal Methods in Soft-
ware Engineering. Wokingham, England: Addison
Wesley, 1992.

[19] J. B. Wordworth. Software Development with B:
An Introduction. Harlow, England: Addison Wes-
ley Longman Limited, 1996.

Applying Use Case Maps and Formal Methods to the Development
of Wireless Mobile ATM Networks

Rossana M. C. Andrade1

TSERG, School of Information Technology and Engineering, University of Ottawa
150 Louis Pasteur, MCD 409, Ottawa, Ontario, K1N 6N5, Canada

E-mail: randrade@site.uottawa.ca

Abstract. Over the last few years, several alternatives for adding mobility to Asynchronous Transfer Mode (ATM)
signaling protocols have been presented in the literature. However, most of the current approaches for wireless
mobile ATM (WmATM) network development include basically text and information flows. As a result of the
complexity involved in handling mobility, communication and handoff procedures for WmATM networks, current
approaches can lead to ambiguities, gaps, inconsistencies and undesirable interactions at the later stages of the
development process where changes can be costly and provoke backward incompatibility. With these problems in
mind, this work proposes a development approach that includes a technique called Use Case Maps (UCMs), and the
following formal methods: Language of Temporal Ordering Specifications (LoTOS) and Message Sequence Charts
(MSCs). UCMs are applied at the requirements capture and analysis stages, followed by LoTOS and MSCs at the
design stage. Besides providing a better and precise description of the system at the early stages, our main goal is to
combine these techniques and help to solve design problems like the ones mentioned above. As a case study,
WmATM network procedures are specified using the proposed approach.

Keywords. Causal Scenarios, Use Case Maps, Formal Techniques, Language of Temporal Ordering Specifications,
Message Sequence Charts, Wireless Mobile ATM Networks.

1. INTRODUCTION
Although Formal Description Techniques (FDTs) have been successfully used to specify and validate
protocols in different application domains achieving clear and concise specifications, most current
development approaches for Wireless mobile ATM (WmATM) networks include basically text and
information flows at the early stages. As a result of the complexity involved in handling mobility,
communication and handoff procedures, these approaches can lead to ambiguities, gaps, inconsistencies
and undesirable interactions at the later stages.

FDTs, such as LoTOS [21], the Language of Temporal Ordering Specifications, and Message
Sequence Charts (MSCs) [18], have not only shown resiliency in the usability, but also tool support and
training have improved in the last 15 years [4][12][13]. Even though LoTOS and MSCs can be used at
different levels of abstraction, it requires precision on the description of action sequences and exchanged
messages. Thus, these formal techniques are more suitable to be applied at intermediate stages of the
development process. In contrast, visual techniques such as Use Case Maps (UCMs) [8][9] give to the
designer capability to work with whatever amount of detail is available being appropriate for the early
stages.

In this context, we propose the application of UCMs, LoTOS, and MSCs at different stages of the
system development process. UCMs are applied at the requirements capture and analysis stages, followed
by LoTOS and MSCs at the design stage. The proposed approach is applied to the development of a
prototype for WmATM networks. Mobility, communication and handoff procedures are firstly described
with UCMs and, in conformance to that, formally specified and validated with LoTOS. MSC scenarios
are automatically generated from the LoTOS specification in order to represent the results of the
validation and facilitate the implementation of protocols.

This paper is divided into 7 sections. An overview of the WmATM networks is given in Section 2.
Section 3 illustrates the proposed development approach. A big picture of the relationship among
mobility, communication and handoff procedures for WmATM networks are described with UCMs in
Section 4. After that, the corresponding LoTOS specification is presented in Section 5. Section 6 shows

1 Ph.D. Candidate at SITE, Professor at the Computer Science Department, Federal University of Ceará, Brazil,

and sponsored by CAPES (Brazilian Federal Agency for Graduate Studies).

the generated MCSs scenarios and, last, Section 7 discusses our main contributions. Related works are
also mentioned in Sections 4, 5 and 6.

2. CASE STUDY: WIRELESS MOBILE ATM NETWORKS
Asynchronous Transfer Mode (ATM) was developed in the 90s to support high-bandwidth multimedia
applications and provide bandwidth on demand, traffic integration, cost effectiveness, as well as flexible
data networking [23]. Nowadays, ATM is viewed as a strong candidate to extend these services to
portable systems using wireless technologies [1][28][30]. Accordingly, several alternatives for adding
mobility to ATM signaling protocols have been presented in the literature [5][6][7][10][24][31]. For
example, [7] and [28] present WmATM networks as a wireless extension of ATM networks with mobility
and any modification in the existing ATM signaling protocols. On the contrary, [24], [30] and [31]
believe that minimum challenges should be done in the ATM networks to support mobility and achieve a
global WmATM network environment. In [5] and [6], the authors present two different signaling
protocols to support both alternatives.

2.1. A Typical WmATM Network Environment
Figure 1 illustrates a possible environment that can support the concepts involved in designing a global
WmATM network. The wireless service area is divided into cells and each cell is equipped with a base
station transceiver (BST) that is responsible for the use of the allocated spectrum. A base station (BS) is
responsible for a set of BSTs that are connected to the BS through wireless access ports. Several mobile
stations (MSs) share the capacity of each BST. A wireless ATM network backbone is composed of
WmATM switches attached through high-speed transmission links. Databases are responsible for keeping
information about mobile users. The wireless backbone can communicate with the ATM network
backbone using wired access ports.

We choose a simplified wireless mobile ATM network as a case study, since it is representative of
large and complex systems and touches upon common problems in the development process of these
systems. The WmATM reference architecture considered in our work includes mobile stations, WmATM
switches and databases. An ATM network composed of ATM switches and fixed stations is also described
to allow the communication between fixed and mobile stations. Since we focus on signaling protocols for
upper layers, base stations are not considered. Mobile stations communicate directly with WmATM
switches and mobility occurs every time the mobile station changes a location area (represented by
changing the WmATM switch).

Figure 1 A Possible Wireless Mobile ATM Network Environment
(adapted from Figures 2, 3 and 4 of [24][7] and [1], respectively)

In the ATM fixed networks [17], there is no need for databases since each fixed station has a user’s
identification that determines where the user is and how to route a call to the user. Our work focuses only

WmATM
Switch

Cells
...

Wireless ATM Network Backbone

Transmission
 Link

Wireless Access
Ports

. ..

Databases

Wired Access Ports

Base
Station

Base Station
Transceiver

Mobile Stations

ATM Network
Backbone

.

on the specification and validation of connections between mobile users and between mobile and fixed
users.

During the development of the WmATM network environment, each component of the reference
architecture is specified with its corresponding protocols related to mobility, communication and handoff.
Informally, mobility management functions provides a secure environment for mobile users, updates
location information and perform the user de-registration in an old location area when a mobile user
roams and registers in a new location area. Communication management functions are used to establish,
release and maintain calls between two mobile users, from mobile to fixed users, and from fixed to
mobile users at their request. Meanwhile, handoff functions give to the mobile user freedom of motion
beyond a wireless coverage area by maintaining the quality of a link whenever a user moves from one
location to another.

2.2. Current Development Approaches
Several signaling protocols alternatives for wireless mobile ATM networks have been presented in the
literature and their development approaches involve informal descriptions as text at the early stages
followed by flow charts [7][31], state models [10], or information flows [5][6][24] as shown in Figure 2.

Figure 2 Different Development App roaches for WmATM Networks

When signaling protocol requirements are described only with text, they can lead to redundancies and
become cumbersome to read, understand and manage at the later stages. An attempt to solve these
problems is usually done following informal description by information flows (also known as sequence
diagrams or message sequence charts). However, they are only necessary for detailed design, when design
decisions about messages, parameters, data, and system components need to be taken. State models are
also suitable for later stages, since they demand full precision during the definition of each state and
underlying architecture. As a result, from the informality of the text to these formal models, a description
gap can be identified that leads to protocol inconsistencies and undesirable interactions at the later stages.
Even though flow charts are more adequate after informal descriptions to reduce this gap, they quickly
become difficult to manage due to the increasingly complexity involved in the description of architecture
and protocols of large systems such as WmATM networks. Besides this, information flows and flow
charts produce disjoint scenarios that can not be validated. Thus, completeness and consistency can only
be checked at the implementation stage.

3. THE PROPOSED DEVELOPMENT APPROACH
In order to overcome the problems mentioned earlier, this work proposes the combination of techniques
such as UCMs, LoTOS and MSCs in the system development process. The proposed approach splits this
process into a number of steps, called stages, each of which produces a more detailed view of the system.
By decomposing a system into manageable units, we are applying a strategy used by object- and function-
oriented software community when dealing with the complexity of large systems [11]. Besides this, we
are adding rigor to the approach by using formal techniques. Figure 3 depicts the proposed development
approach with requirements capture, analysis and design stages. Arrows show how these stages interact
and represent the relation dependency on. Several development cycles represent the gradual and iterative

Current WmATM Network
Development Approaches

Presented in [5][6][24]

Informal
Description

Information
Flows

Informal
Description

Flow Charts

Presented in [7][31]

Informal
Description

Information
Flows

Presented in [10]

State Models

characteristics of the approach. Since implementation and testing are not considered for our work, we
omit these stages in the figure.

Figure 3 Proposed Development App roach

The requirements capture stage is the first input for the development of a system. The elicitation of
meaningful requirements identifies and documents what the system is supposed to do and which are the
main functions to be described. Use cases are used for most software community to describe the sequence
of events of an actor (an external agent) using a system to complete a process [19]. To avoid ambiguities
caused by narrative documents such as simple text or even textual use cases, these informal descriptions
are replaced by a requirements model developed with UCMs. Since the notation is informal and intuitive,
it is suitable for the early stages when the user needs are described in a high-level of abstraction and
designers are discussing about, visualizing and explaining the overall behavior of a system. For example,
at the beginning, when organizational structure details are not available, this visual technique describes
high-level scenarios in terms of causal relationships between responsibilities (called unbound UCMs).
The stub notation is used to hide functions that are detailed at the later stages.

Design decisions regarding which system component is responsible for a specific action, event or
transaction are taken during the analysis stage. The functional behavior is further investigated and
mapped to system components (part of the reference architecture). The analysis model is generated with
bound UCMs. Detailed descriptions about what the system does are represented in terms of UCM
notation: plug-ins, detailed responsibilities, detailed pre- and post-conditions.

Even though UCMs are supported by a drawing tool (the UCM Navigator) [20] and by a user group
[29], due to its informality, validation and verification techniques are not possible. Two formal methods
are included at the design stage, LoTOS [21] and MSCs [18], to describe how system components
communicate or interact in order to fulfill the analysis model. Details regarding data types, parameters
and exchange messages are introduced in a design model (behavior and reference architecture are
described with LoTOS) and successful and unsuccessful outcomes are shown in several MSCs (scenario
models).

LoTOS specifications represent a system prototype by describing temporal relations with externally
observable behavior. Abstract data types are also included in this formal technique. Details about LoTOS,
standardized by ISO, can be found in [21]. This FDT is supported by tools that offer ways of checking
completeness and consistency. For instance, LOtos LAboratory (LOLA) is a set of tools developed by the
Department of Telecommunication Engineering (ETSIT) of the University of Madrid [22] that includes: a
step-by-step executor, a tool for obtaining the labeled transition system, and a tool for testing.

MSCs [18], standardized by ITU-T, describe interactions between system components. Each MSC
represent exactly one scenario by focusing on the communication behavior of system components and
their environment through message exchanges. We use MSCs to represent the results of the LoTOS
validation and these scenarios are used as input to the implementation and testing stages. Recently, a

Requirements Model
Unbound Use Case Maps

Scenario Model
Message Sequence
Charts

Design Model
LOTOS

Design Stage

Analysis Stage

Requirements
Capture Stage

depends on

depends on

depends on

1st Development Cycle

Analysis Model
Bound Use Case Maps

Lotos2MSC Converter is being developed by Bernard Stepien [25] in order to generate MSCs directly
from LoTOS traces. The first version is already available and applied to our work.

As a case study, we iterative and gradually specify and validate a simplified WmATM network
environment. The system behavior increases with designer and user needs. Each development cycle
brings more details regarding new functional requirements as well as new system components. At the
beginning, mobility management are described (development cycle 1), followed by communication and
handoff functions (development cycle 2 and 3). Next sections present the description of the system
functional behavior and reference architecture using our approach.

4. WmATM DESCRIPTION WITH USE CASE MAPS
This section presents the requirements capture and analysis stages of the proposed development approach
depicted in Figure 3. These models are based on the description of WmATM signaling protocols
presented in [5][6] as well as on our experience with wireless network standards [3][4]. By focusing on
the functional requirements with the UCM notation, firstly, it is possible to describe the whole scenario of
how the simplified WmATM network environment works. The system is decomposed in the following
functions: mobility (authentication, registration and de-registration), communication (connection
establishment and disconnection) and handoff functions. These functions are gradually described in terms
of sequential actions with unbound UCMs (the requirements model) followed by more details about the
system behavior and the addition of the reference architecture with bound UCMs (the analysis model).
We present the first development cycle related to mobility management functions. Scenarios related to the
other functions as well as exceptions (such as network failure, lack of network resources, database failure
and so on) are left to the next development cycles.

4.1. Requirements Model: Unbound UCMs
The whole behavior of the system and, consequently, the relationship among the functions mentioned
earlier are better understood by following the UCM flows shown in Figure 4. Based on the root map,
users and designers can discuss about early decisions regarding the sequence in which these functions are
performed. This map describes the system behavior that starts when a pre-condition is triggered, for
example, the user powers on a mobile station (filled circle labeled S). A stub (such as MM, HP and CM in
the figure) identifies places where details are delayed to a sub-UCM, called plug-in. The stub notation is
applied to our work not only to hide details, but also to decompose the system into small manageable
units. In this paper, we focus on the MM Stub to show the development approach step-by-step.
Communication management and handoff functions are not described for space limitation.

Figure 4 WmATM Network Root Ma p: Unbound UCMs

Legend :
S: Start (user powers on mobile station)

MM : Mobility Management Procedures

CM : Communication Management Procedures
HP: Handoff Procedures

[a1] : [handoff inter-WmATM switches]
[a2] : [mobility management functions]
[a3] : [successful handoff]

[a4] : [A handoff failure aborts MM and CM sub-maps]
[a5] : [no communication is requested]
[a6] : [communication is requested]
[a7] : [(un)successful communication]
E1: endHP (user powers off mobile station)
E2: endHFA (a failure has occurred)
E3: endCM (user powers off mobile station)
E4: endMM (user powers off mobile station)

S

MM

CM

HP
[a4]

E3

E1 E2

[a1] [a2][a3]

[a5]

[a7]

[a6]

E4

This scenario ends with one or two of the following post-conditions: user powers off mobile station (bars
labeled E1, E3 and E4) or a handoff failure occurs (bar labeled E2). A route is a path that links an initial
cause to a final effect. For example, <S, [a2], MM, E4> represents a route for registration followed by an
user powers off event. The zig-zag notation ([a5] path) exists to describe exception paths, however, we
propose its use also to describe synchronous interactions between stubs such as HP and CM (HP replaces
CM in case of handoff failure). Direction arrows help designers to visualize the UCM flow as in the HP
stub where an outgoing path returns to the same stub in order to trigger the plug-in. And-forks represent
composite UCMs that split a path into parts (sub-paths) that proceed concurrently ([a1] and [a2] in the
figure). Or-joins represent composite UCMs that can be concatenated in only one path (represented by
[a3] joining [a1], [a5] joining [a2], and [a7] joining [a6]). There is no level of concurrency associated with
OR-joins.

Figure 5 depicts the second level of the requirements model when mobility management procedures
are decomposed into small units represented by Auth and Update stubs in the Location Registration plug-
in bound to the MM stub in the root map. Alternative paths (called OR-forks) represent composite UCMs
that can be split into two different paths (no level of concurrency is associated with them). For instance, a
responsibility point (cross labeled cR in the figure) is activated along the [b2] path to decide whether the
mobile station is registered or not at the current location area. The alternatives sub-paths (labeled [b3] and
[b4]) are generated after this decision. Auth stub has two outgoing paths labeled [b1] and [b2] that
correspond to end points of the authentication plug-in (respectively, unsuccessful and successful
outcomes). The Update stub groups all the functions related to updating user information.

Figure 5 (a) Location Registration Pl ug-in for MM Stub

The main advantage of applying unbound UCMs when comparing with information descriptions is the
visual representation of the overall system behavior since the early development stages. Under such
circumstances, the system description becomes more readable and design decisions regarding to the
mapping of the reference architecture, exchanged messages and data types are easier to handle at the later
stages.

4.2. Analysis Model: Bound UCMs
At the analysis stage, the previous stubs are detailed with responsibility points along the paths that
identify actions, events, or operations on data items. Figure 6(a) details the Auth stub. First, the mobile
station processes the user authentication and sends the authentication result to the network (sI
responsibility). Then, the aAA responsibility performs the same authentication operation at the network
side. The cAR responsibility generates the successful or unsuccessful outcomes (respectively, E2’’ or
E1’’ end points). In case of denied authentication, the mobile user is notified (nAD responsibility).
Otherwise, the network is notified (nN responsibility).

Figure 6(b) shows what happens inside the Update stub. For example, cL generates different
outcomes according to whether the mobile user is roaming or not. uP and uTP responsibilities are
operations on database items. Sub-paths labeled [c1] and [c2] are concatenated after the network is
notified (nN responsibility) about the successful operation.

S’ : Start
Auth : Authentication
Update : Location Updating
cR : check Registration
E1’ : endUnsucAuth
E2’: :endUpdate
[b1] : [auth. Denied],,[b2] [Auth. Success]
[b3] : [not Registered],,[b4] [Registered]

S’

[b1]
Auth

[b2]

E1’ E2’

Update

[b3]

cR

[b4]

Legend :

Figure 6 (a) Authentication and (b) U pdate Information Plug-ins

Besides describing detailed scenarios as causal paths with new plug-ins bound to the stubs at this stage,
organizational structures of system components (represented by rectangular boxes as shown in Figure 7)
are added. For instance, WmATM components involved in the authentication and update information
functions, Mobile Stations, WmATM switch and Home and Visitor Databases are mapped to the unbound
UCMs described at the requirements model.

Figure 7 Bound UCMs: Authenticatio n and Update Information Plug-ins

Related and Future Work. With the increasing popularity of the Unified Modeling Language (UML) for
modeling systems using object-oriented concepts, UCMs are currently being investigated as another UML
artifact to help the system development process. According to [2], UCMs can help to bridge the gap
between the use case model and the analysis and design models represented by behavioral diagrams
(sequence, state charts, and activity diagrams) in the UML. We intend to apply UCMs as an alternative
for the early stages of the function-oriented development process combined with a strong formal method
such as LoTOS and MSCs. In short, our approach brings more powerful tools to tackle the verification
problem (how can a designer solve a given problem systematically so that requirements are realized) in
large systems. Object-oriented analysis and design that are the subject of UML is one step further and it is
considered as future work.

Besides the comparison with UML, as a graphical notation, UCMs resembles petri nets at a first
sight, but many differences can be quickly perceived. For instance, use case maps are based on causality
events while petri nets are based on states or events. Also, semantics are not defined for UCMs, they are
often applied to the early stages of the development process to give a global picture of the system, they
are light-weight, easy to learn, and the underlying architecture can be also expressed using this notation.
On the other hand, petri nets have strict semantics, are rich in analysis methods, have automated tools that
are rigorous and soundness. Besides this, the latter is more appropriate to the design stage and more

S” Auth, S” Updt : Start

cL: check Location
uP : update Home User Profile
uTP : update Visitor User Profile
nN : notify Network

E1” Auth: endUnsucAuth
endSucAuthE2” Auth:

[d1] : [visiting location area]
[d2] : [home location area]

S’’Updt

[d1] [d2]

E2’’Updt

nN
uTP
uP

cL

uP

Legend : (a) Authentication (b) Update Information

S’’Auth

[c1]

sI

[c2]

E1’’AuthE2’’Auth

nAD

aAA
cAR

nN

[c1] : [successful Authentication]
[c2] : [unsuccessful Authentication]

sI: send Authentication Information
aAA: apply Authentication Algorithm
cAR : check Authentication Result
nAD: notify Access Denied

nN

endUpdateE2’’Updt:

S’’Updt

[d1] [d2]

E2’’Updt

nN

uTP

uP

cL

uP

(a) Authentication (b) Update Information

S”Auth

[c1]

sI

[c2]

E1’’AuthE2’’Auth

nAD

aAA
cAR

nN

Mobile Station

WmATM
Switch

nN

WmATM
Switch

Home
Database

Visitor
Database

feasible to be compared to formal languages like LoTOS and Specification and Description Language
(SDL). A mapping of UCMs to petri nets can be investigated as future work.

5. WMATM SPECIFICATION AND VALIDATION WITH LOTOS
At the design stage, a formal model is generated based on the bound UCMs described earlier. LoTOS has
many advantages to specify and validate complex and large systems. For example, different levels of
abstraction can be used to describe functional behavior at different development cycles, not to mention
the LoTOS ability of process instantiation and parallel composition to specify the system reference
architecture with the sequence of responsibilities defined previously at the requirements and analysis
models. LoTOS tools like the LOLA environment are available to automatically support validation and
verification methods. These methods allow the detection of design errors, inconsistencies and
incompleteness at the time the LoTOS specification is being developed.

Since the behavior and structure models are iterative and incrementally generated at the requirements
and analysis stages, the LoTOS specification becomes easier to develop. In addition, the gap between
stages is also reduced by moving from bound UCMs (such as Figure 7) to LoTOS processes and gates
shown in Figure 8. Even though the processes are derived from the UCM system components, design
decisions related to how they communicate through gates are not always straightforward and depend on
real interfaces and synchronization needs.

Figure 8 Graphical Representation of the LoTOS Specification Architecture

At the highest level of abstraction, the specification is composed of Wireless mobile ATM Network, ATM
Transmission Link (depicted in gray in the figure to differentiate from the processes described also as
UCM system components at the previous stages) and ATM Network processes. Wireless mobile ATM
Network includes mobile stations (originating and terminating sides), WmATM switches (same process for
previous and current WmATM switches), home databases (referred to Home Location Register - HLR in
the specification), and visitor databases (referred to Visitor Location Register - VLR) sub-processes.
These processes are synchronized through the following gates: ms_wsh, vlr_wsh, wsh_link, and
hlr_link. ATM network process contains fixed stations and ATM switches connected through gate fs_sh
(not shown in the figure for lack of space). ATM transmission link process are added to this stage in order
to overcome a LoTOS limitation and provide the communication among WmATM switch processes
(through gate wsh_link) and among ATM switches processes (through gate sh_link). Gates e_ms and
e_fs provide the interaction of mobile and fixed stations with the environment (for simulation purpose).

Figure 9 depicts how theses processes synchronize through the gates (||| represents the interleaving
operator and |[gate list]| the selective parallel operator). The use of these LoTOS operators allows process
synchronization and the ability to simulate and test the whole system behavior. Data types are designed to
guarantee information exchange among processes. In particular, each MobileStation is identified by its
identification number (user_A, user_B, and User_C in the figure), electronic serial number, random
variable, secret key (these identifiers are represented by info_A, info_B and info_C), home database
(hlr_1 and hlr_2) and current zone (zone_1 and zone_2). Each WmATM switch has its identification
(zone_1 and zone_2 in the figure). HLR and VLR processes keep an identity and information about mobile
stations in a set of database record (called HLRRecSet and VLRRecSet, respectively).

MobileStation

Visitor
Database

WmATMSwitch

WirelessMobileATMNetwork

e_ms ms_wsh

vlr_wsh

wsh_link

ATM
Transmission
Link

Home
Database

hlr_link

to the ATM
Network

process MobileStation [e_to_ms, ms_to_wsh] (usrid: UserIDN, userInfo: InfoIDN,
myzoneid: ZoneIDN, hlrid:DatabaseIDN, n: Nat) :exit :=
(… e_to_ms !usrid ?czid:ZoneIDN; (* change location area *)
 ([h(myzoneid) ne h(czid)] -> (* registration begins *)
 (ms_to_wsh !usrid !czid !InitiateRegREQ;
 ms_to_wsh !usrid !czid ?M:Message [h(M) eq h(InitiateRegCONF)];
 (* authentication process takes place *) …
 ms_to_wsh !usrid !czid !hlrid !r !AuthUserResult;
 ms_to_wsh !usrid !czid ?M:Message;
 ([h(M) eq h(AuthSuccess)] ->
 MobileStation [e_to_ms, ms_to_wsh] (usrid, userInfo, czid, hlrid, 0)
 [] [h(M) eq h(AuthDenied)] ->
 … MobileStation [e_to_ms, ms_to_wsh] (usrid,…,czid, hlrid, n)))) …)
 [> e_to_ms !usrid !myzoneid ?M:Message[h(M) eq h(PowerOff)]; stop
 >> MobileStation [e_to_ms, ms_to_wsh] (usrid, myzoneid, hlrid, 0)
endproc (* MobileStation *)

Figure 9 Highest Level of Abstraction of the LoTOS Specification

The behavior of each process is first generated based on the sequence of UCM responsibilities (for
instance, from Figure 4, Figure 5, and Figure 7 to Figure 10). After that, both informal descriptions and
information flows presented in [5] and [6] are considered to add more details to the specification such as
data types and specific messages. During this stage, duplicate behavior and incomplete scenarios related
to the signaling protocols are detected and corrected using the simulation and testing Lola tools. For
example, in our specification the same procedure is used for connection establishment between two
mobile users as well as between mobile and fixed users minimizing duplicated behaviors. Also, more
unsuccessful scenarios are described, such as power off, handoff failure and disconnection (represented
by the [> disable operator). These scenarios happen at any time after the user powers on or the connection
establishment. Figure 10 depicts part of the behavior of the MobileStation process when a mobile user
powers on and authentication and update information plug-ins are triggered as shown in Figure 7.

Figure 10 Partial Behavior of the Mobi leStation Process

LOLA is a transformational and state exploration tool that supports execution and testing of LoTOS
specification. To do this, LOLA provides a set of tools that help designers to analyze the behavior of a
system before the implementation stage. The following tools are applied to our specification: simulation
or debugging that simulates the behavior step by step and evaluates data value expressions; and testing
that calculates the response of a system specification to a test according to testing equivalence. The one

behavior
hide ms_to_wsh, vlr_to_wsh, hlr_to_link, wsh_to_link, fs_to_sh, sh_to_link in
((WirelessMobileATMNetwork [e_to_ms, ms_to_wsh, wsh_to_link, vlr_to_wsh,
hlr_to_link] ||| ATMNetwork [e_to_fs, fs_to_sh, sh_to_link])
 |[wsh_to_link, sh_to_link, hlr_to_link]|
 ATMTransmissionLink [wsh_to_link, sh_to_link, hlr_to_link])
where
process WirelessMobileATMNetwork [e_to_ms, ms_to_wsh, wsh_to_link, vlr_to_wsh,
hlr_to_link]: exit :=
 ((* users power on the mobile station *)
 (MobileStation [e_to_ms, ms_to_wsh] (user_A, info_A, zone_1, hlr_1, 0)
 ||| MobileStation [e_to_ms, ms_to_wsh] (user_B, info_B, zone_1, hlr_1, 0)
 ||| MobileStation [e_to_ms, ms_to_wsh] (user_C, info_C, zone_2, hlr_2, 0))
 |[ms_to_wsh]|
 ((WmATMSwitch [ms_to_wsh, wsh_to_link, vlr_to_wsh] (zone_1)
 |[vlr_to_wsh]| VLR [vlr_to_wsh] (vlr_1, InitialVLRSet1))
 |||(WmATMSwitch [ms_to_wsh, wsh_to_link, vlr_to_wsh] (zone_2)
 |[vlr_to_wsh]| VLR [vlr_to_wsh] (vlr_2, InitialVLRSet2)))
 |[hlr_to_link]|(HLR [hlr_to_link] (hlr_1, InitialHLRSet1)
 |||HLR [hlr_to_link] (hlr_2, InitialHLRSet2))) …

expansion transformation tool is also used to generate a file with a trace (one possible scenario). Next
sub-section presents MSC scenarios that are automatically generated from LoTOS validation traces
contained in these files.

6. SCENARIOS WITH MESSAGE SEQUENCE CHARTS
MSC is the favorite notation to describe scenarios of current systems and many basic sequence diagrams
are used at the early phases of the development of large systems, standards and to represent early behavior
model in object-oriented approaches. Nevertheless, these diagrams are static and disjoint, only one
sequence of events can be observed at once. Due to these characteristics, validation and verification
techniques are not possible and in [4], we propose their use as a complement of formal methods such as
LoTOS and SDL [16]. Recently, High-Level MSCs include control structures that can combine several
MSCs representing more than one scenario, however, they are not considered in our work. By adding
these scenarios to the proposed approach, we aim to represent the results of the LOLA validation
activities. Successful and unsuccessful MSC scenarios can be more readable and attractive than LoTOS
traces and they can be used for implementers to generate the protocols.

The generation of MSCs is done automatically with the Lotos2MSC converter tool. This tool uses a
configuration file that interprets the LoTOS traces and generates proper MSC scenarios. To make this
possible, the converter uses conventions and additional configuration information to decode a LoTOS
action and its elements (the sequence of values) to derive MSCs components, messages and parameters.
The converter restricts LoTOS capability of full-duplex communication through gates (no direction is
associated to the execution of LoTOS actions among processes) by demanding that gates represent
directions and components. Since LoTOS generic concept of action defines messages and parameters
implicitly in terms of abstract data types, as mentioned above, the tool can only recognize messages and
parameters when they are described in the LoTOS action. A direct mapping of LoTOS to MSC concepts
is not done due to LoTOS synchronization of many simultaneous actions in contrast to MSCs exchange of
messages between components. This converter also allows filtering specific LoTOS actions that the
designer wants to be displayed on the MSC graph using gate names as filtering criteria. More details
about this converter can be found in [25].

Figure 11 illustrates two disjoint scenarios that represent specific behaviors of the system in
conformance not only with the LoTOS specification (Figure 10) but also the bound UCMs (Figure 7(a)).
For sake of clarity, we represent WmATM switch process as current WmATM switch.

Figure 11 (a) Successful Authenticatio n (b) Unsuccessful Authentication

By comparing these MSCs with some of the protocols presented in the literature, decisions such as the
authentication result initially being done at the MS side and also network side is clearer and guarantee
security through the air interface (more complete design). Also, details about parameters make the
implementation easier.

Due the popularity of sequence diagrams, most tools for formal methods bring options in how to
generate MSCs from the validation results. For instance, the SDL Development Tool set (SDT) and the
SPIN tool support the process of going from the formal design to MSCs. Work on providing the
requirements first in terms of sequence diagrams and then applying more formal verification techniques
such as the ones supported by the SPIN model checker [15] to these diagrams is presented in [14]. This
process is also a recent research interest for the SDL and LoTOS communities. We believe that these

MobileStation Current
WmATMSwitch

InitiateRegREQ(user_A,zone_1)

AuthSuccess(user_A,zone_1)

InitiateRegCONF(user_A,zone_1)

AuthUsrResult (user_A, zone_1,hlr_1,r)

Change
Zone

MobileStation Current
WmATMSwitch

InitiateRegREQ(user_A,zone_1)

AuthUnSuccess(user_A,zone_1)

InitiateRegCONF(user_A,zone_1)

AuthUsrResult (user_A, zone_1,hlr_1,r1)

Change
Zone

solutions as well as our approach are valuable and lead to a more effective and attractive way to design a
system and present the validation and verification results to users and developers.

7. CONCLUSION
Current development approaches for wireless mobile ATM (WmATM) networks describe all specific
information related to the signaling protocols at once. However, a good approach should iterative and
gradually add details during different development stages and life cycles, while checking for ambiguities,
inconsistencies, and undesirable interactions. In this context, the main contribution of this work is to
introduce the combination of different techniques at appropriate stages of the system development
process. As a case study, mobility, communication and handoff procedures for WmATM networks are
developed using the proposed approach.

In short, at the requirements capture stage, unbound Use Case Maps (UCMs) are used as first
scenarios by focusing on the causality relationship between responsibilities, without any concern about
components. At the analysis stages, system components and more behavior details are added to these
maps, generating bound UCMs. This notation provides a better human understanding of the system and it
helps network designers to produce descriptions of the requirements more legible as well as facilitates the
system development and maintenance. At the design stage, a formal specification is developed with
LoTOS adding rigor to the approach and many possible behaviors are described concurrently with details
such as data types, parameters and specific events. A set of LoTOS tools assures the completeness of the
system and verifies correctness and consistency properties. MSCs scenarios are automatically generated
from the results of the LoTOS validation in order to facilitate future protocol implementation.

The proposed approach improves the existing current development process for wireless mobile ATM
networks in different ways as follows: by achieving a better model, by helping human understanding and
by reaching technical quality with the formal specification for future maintenance. Using our approach,
inconsistencies of parameters and incompleteness of the informal description are detected and corrected.
In addition, the UCM technique can reduce the gap between early and later stages. Our results also intend
to show how the combination of informal and formal techniques at the appropriate development stages
can really aid designers on generating good systems, ready to be reused and easy to maintain and add new
features.

The motivation for choosing WmATM networks resides in their under development status and also
the amount of information available about the signaling protocol alternatives. This makes feasible to
produce the design prototype with the proposed approach. Our approach can also be applied to other
wireless mobile communication systems. The Ottawa University LoTOS Group has successfully applied
LoTOS to the specification and validation of mobile network standards, such as Global System for
Mobile Communication (GSM) [27], and UCMs to the description of Wireless Intelligent Network
standards [26] as presented in [3]. Currently, the combination of these techniques is being one of the main
research topics of our group.

8. ACKNOWLEDGMENTS
I would like to thank the UofO’s LoTOS Group for their support, especially Luigi Logrippo, Jacques
Sincennes, Masahide Nakamura, Daniel Amyot and Leila Charfi. Many thanks to the anonymous
reviewers for their judicious comments. Finally, I acknowledge CAPES for its financial support.

9. REFERENCES
[1] Acampora, A., “Wireless ATM: A Perspective on Issues and Prospects”, IEEE Personal Communications, Vol.
3, No. 4, pp. 8-17, August 1996.
[2] Amyot, Daniel, Use Case Maps and UML for Complex Software-Driven Systems, Technical Report, August
1999. www.usecasemaps.org
[3] Amyot, D., Andrade, R., “Description of Wireless Intelligent Networks with Use Case Maps”, Proc. Brazilian
Symposium on Wireless Networks (SBRC 99), pp.418-433, Salvador (BA), Brazil, 25-28 May 1999.

[4] Amyot, D., Andrade, R., Logrippo, L., Sincennes, J., and Yi, Z. (1999) “Formal Methods for Mobility
Standards”. IEEE 1999 Emerging Technology Symposium on Wireless Communications & Systems, Dallas, USA,
April 1999.
[5] Akyol, B. A., “Signaling Alternatives in a Wireless ATM Network”, IEEE Journal on Selected Areas in
Communications, Vol. 15, No. 1, pp. 35-49, January 1997.
[6] Akyol, B. A. and Cox, D. C., “Rerouting for Handoff in a Wireless ATM Network”, IEEE Personal
Communications, Vol. 3, No. 5, pp. 26-33, October 1996.
[7] Ayanoglu E. et al., “Wireless ATM: Limits, Challenges, and Proposals”, IEEE Personal Communications, Vol.
3, No. 4, pp. 18-36, August 1996.
[8] Buhr, R.J.A. and Casselman, R.S., Use Case Maps for Object-Oriented Systems, Prentice-Hall, USA, 1995.
http://www.UseCaseMaps.org/UseCaseMaps/pub/UCM_book95.pdf
[9] Buhr, R.J.A. (1998) “Use Case Maps as Architectural Entities for Complex Systems”. In: IEEE Transactions on
Software Engineering, Special Issue on Scenario Management. Vol. 24, No. 12, December 1998.
http://www.UseCaseMaps.org/UseCaseMaps/pub/tse98final.pdf
[10] Cheng, Fang-Chen, Holtzman, Jack M., “Wireless Intelligent ATM Network and Protocol Design for Future
Personal communication Systems”, IEEE Journal on Selected Areas in Communications, Vol. 15, No. 7, Sept. 1997.
[11] Corriveau J.,-P., Nel, D. N., “Introduction to Object-Oriented Software Engineering”, Version 1.0, Course
Notes, School of Computer Science, Carleton University, 1997.
[12] Courtiat, J.,-P., Dembinski, P., Holzmann, G., J., Logrippo, L., Rudin, H., Zave, P., “Formal Methods after 15
years: Status and trends”, Computer Networks and ISDN Systems 28, pp. 1845-1855, 1996.
[13] Faci, M., Logrippo, L., Stepien, B., “Structural Models for Specifying Telephone Systems”, Computer
Networks and ISDN Systems 29, pp. 501-528, 1997.
[14] Holzmann, Gerard, J., Formal Methods for Early Fault Detection, Proc. Of Formal Techniques for Real-Time
and Fault Tolerant Systems, LNCS Vol. 1135, pp. 40-54, 1996.
[15] Holzmann, Gerard, J., Design and Validation of Computer Protocols, Prentice Hall Software Series, 1991.
[16] ITU-T, Recommendation Z. 100: Specification and Description Language (SDL). Geneva, 1994.
[17] ITU-T, Recommendation Q.2931: ATM Network Signaling Specification, 1995.
[18] ITU-T, Recommendation Z. 120: Message Sequence Chart (MSC). Geneva, 1996.
[19] Jacobson, Ivar et. al, Object-Oriented Software Engineering (A Use Case Driven Approach), ACM Press,
Addison-Wesley, 1992.
[20] Miga, A., Application of Use Case Maps to System Design with Tool Support, M.Eng. Thesis, Dept. of Systems
and Computer Engineering, Carleton University, Ottawa, Canada, 1998.
[21] OSI - IS 8807, “Information Processing Systems - Open Systems Interconnection - LOTOS - A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour”, International Standard IS
8807 (E. Brinksma, ed.), 1989.
[22] Pávon, S., Larrabeiti, D., and Rabay, G., “LOLA – User Manual”, version 3.6. DIT, Universidad Politécnica de
Madrid, Spain, LOLA/N5/V10, February 1995.
[23] Prycker, Martin de, Asynchronous Transfer Mode: solution for broadband ISDN, Prentice Hall International
(UK) Limited, 1995.
[24] Raychaudhuri, D., “Wireless ATM Networks: Architecture, System Design and Prototyping”, IEEE Personal
Communications, Vol. 3, No. 4, pp. 42-49, August 1996.
[25] Stepien, Bernard, Lotos2MSC Converter – User’s Manual, University of Ottawa LoTOS Group, January 2000.
[26] TIA/EIA (1998) Wireless Intelligent Networks (WIN). Additions and modifications to ANSI-41 (Phase 1). TR-
45.2.2.4, PN-3661 Ballot Version, May 1998.
[27] Tuok, R., Modelling and Derivation of Scenarios for a Mobile Telephony System in LOTOS, M.Sc. Thesis,
Computer Science Program, SITE, University of Ottawa, Canada, 1996.
[28] Umehira, M., et al., “ATM Wireless Access for Mobile Multimedia: Concept and Architecture”, IEEE Personal
Communications, Vol. 3, No. 5, pp. 39-48, October 1996.
[29] Use Case Maps Web Page: http://www.UseCaseMaps.org , since 1999.
[30] Varshney, U., “Supporting Mobility with Wireless ATM”, Computer, Vol. 30, No. 1, pp. 131-137, Jan. 1997.
[31] Veeraraghavan, M. et al., “Mobility and Connection Management in a Wireless ATM LAN”, IEEE Journal on
Selected Areas in Communications, Vol. 15, No. 1, pp.50-68, January 1997.

Formal Analysis of the Remote Agent
Before and After Flight

Klaus Havelund1, Mike Lowry, SeungJoon Park2,
Charles Pecheur2, John Penix, Willem Visser2, Jon L. White3

The Automated Software Engineering Group
NASA Ames Research Center,
Moffett Field, California, USA.

1 Recom Technologies, 2 RIACS, 3 Caelum

Abstract

This paper describes two separate efforts that used the
SPIN model checker to verify deep space autonomy flight
software. The first effort occurred at the beginning of a
spiral development process and found five concurrency
errors early in the design cycle that the developers ac-
knowledge would not have been found through testing.
This effort required a substantial manual modeling effort
involving both abstraction and translation from the pro-
totype LISP code to the PROMELA language used by
SPIN. This experience and others led to research to ad-
dress the gap between formal method tools and the de-
velopment cycle used by software developers. The Java
PathFinder tool which directly translates from Java to
PROMELA was developed as part of this research, as well
as automatic abstraction tools. In 1999 the flight software
flew on a space mission, and a deadlock occurred in a
sibling subsystem to the one which was the focus of the
first verification effort. A second quick-response “clean-
room” verification effort found the concurrency error in a
short amount of time. The error was isomorphic to one
of the concurrency errors found during the first verifica-
tion effort. The paper demonstrates that formal methods
tools can find concurrency errors that indeed lead to loss
of spacecraft functions, even for the complex software
required for autonomy. Second, it describes progress in
automatic translation and abstraction that eventually will
enable formal methods tools to be inserted directly into
the aerospace software development cycle.

1 Introduction

Complex concurrent software is difficult to debug and
even more difficult to test with adequate coverage. With
the increasing power of flight-qualified microprocessors,
NASA space enterprises are experimenting with a new
generation of non-deterministic flight software that pro-
vides enhanced mission capabilities. A prime example is
the Remote Agent (RA) autonomous spacecraft controller
developed at NASA. In May 1999, the RA was success-
fully demonstrated in flight on Deep Space 1 (DS-1), the
first flight of NASA’s experimental New Millennium pro-
gram. The RA is a complex, concurrent software system
employing several automated reasoning engines using ar-
tificial intelligence technology. The verification of such
complex software is critical to its acceptance by science
mission managers.

This paper describes formal methods verification ef-
forts for one of the three subsystems of the RA – specifi-
cally, the RA Executive, which provides operating-system
level capabilities for goal-directed software. Two differ-
ent verification activities were conducted, before and af-
ter flight, using different technologies and in very differ-
ent contexts. As such, this paper provides two succes-
sive snapshots of progress towards making formal meth-
ods verification cost-effective.

In 1997, while the RA was still in the development
stage, we modeled and verified a subset of the core ser-
vices of the RA Executive using the SPIN [10] model
checker. That verification unveiled several concurrency

bugs that were acknowledged by RA Executive develop-
ers [7].

As a result of this effort, it was decided to develop
model checking technology for a main stream program-
ming language in order to reduce the amount of time spent
on modeling the behavior of programs in SPIN. The result
was a translator, called Java PathFinder, from Java to the
modeling language PROMELA of SPIN. In addition, a
tool was developed for abstracting Java programs to re-
duce their state space, making model checking tractable.

Then, during the actual RA experiment in 1999, a dead-
lock occurred within less than 24 hours of operation. Al-
though the problem was promptly identified and circum-
vented by the DS-1 team, we took the challenge of try-
ing to diagnose the error in a fast-response “clean room”
experiment 1. After isolating a suspicious part of the pro-
gram by visual inspection, we modeled it in Java, and then
used Java PathFinder to exhibit a concurrency error that
indeed turned out to be the one that had occurred in flight.

One key observation of these two successive experi-
ments is that the error that caused the deadlock is ex-
actly isomorphic to one of those found using SPIN two
years before in another part of the code. It is a concur-
rency error, whose activation depends on a priori unlikely
scheduling conditions between concurrent tasks. In fact,
this error did not appear in over 300 hours of system-level
testing on JPL’s flight system testbed. The conditions un-
der which it occurred in flight were not anticipated during
testing. A principal benefit of model checking technolo-
gies is to be able to exhaustively cover scheduling alter-
natives. This paper gives a compelling illustration of how
model checking found an error that was a priori unlikely
but did actually occur. It also discusses gaps between pre-
vious formal method tools and requirements for making
them easily accessible to system developers for ‘in the
loop’ verification. Technological advances towards nar-
rowing this gap are described in the context of the RA
verification.

Section 2 describes the RA experiment. Section 3 de-
scribes the verification effort before flight, while Section
4 describes the verification effort after flight. The sec-
tion also presents Java PathFinder. Section 5 describes
the Java abstraction tool, and finally, Section 6 contains a
conclusion.

1By “clean room” we are referring to the fact that, while the verifica-
tion was post-facto, the team had no interaction with the actual debug-
ging team.

2 The Remote Agent Experiment

To prepare for space exploration programs of the next
decades within a reduced budget, NASA has set up the
New Millennium program: a series of technology vali-
dation flights whose objective is to accelerate the quali-
fication for flight of new spacecraft technology. One of
the objectives of the New Millennium program is to in-
crease spacecraft autonomy, moving from the low-level
control sequences currently in use towards mission-level
planning and autonomous health monitoring and recov-
ery.

Deep Space 1 (DS-1), the first New Millennium Mis-
sion, was launched from Cape Canaveral on October 24,
1998 and ended its primary mission in September 1999
(it is still operating and is on its way for a comet en-
counter in 2001). During that mission, it successfully
tested 12 cutting-edge technologies such as ion propul-
sion, on-board optical navigation, and the AI-based Re-
mote Agent, marking the first operational use of artificial
intelligence during space flight.

In its initial design, the RA Experiment (RAX) on DS-
1 consisted of a short, limited 12-hour scenario designed
to gain confidence in the RA, followed by a complete
6-day scenario that was the full RA test. Later, the ex-
periment had to be compressed into a single 2-day sce-
nario, to accommodate external mission constraints. The
original scenarios were designed to cover a formal list
of validation objectives. To protect the main DS-1 mis-
sion from possible misbehaviors of RA, the design in-
cluded a “safety net” that allowed the RA experiment to
be completely disabled with a single command, issued ei-
ther from the ground or by on-board fault protection.

The RA went through a thorough qualification process
before being allowed to run on DS-1. Though some for-
mal verification tasks, such as the one reported here, were
performed as feasibility studies, the formal qualification
process relied on more conventional testing approaches.
However, since the RA was a flight experiment, and not
flight software, it was not subjected to the testing stan-
dards of the latter.

This section is a short summary of the flight qualifica-
tion and experience of the RA [2, 13].

2.1 Remote Agent

The RA is an autonomous spacecraft controller developed
by NASA Ames conjointly with the Jet Propulsion Labo-
ratory (JPL) [12]. It comprises three components:

� The Planner and Scheduler (PS) [11] generates flex-
ible plans, specifying the basic activities that must
take place. Given a mission goal, it produces se-
quences of tasks for achieving this goal using avail-
able system resources.

� The Smart Executive (EXEC) [14] receives the plan
from the Planner/Scheduler and then commands
spacecraft systems to take the necessary actions to
achieve and maintain the specified spacecraft states.

� The Mode Identification and Recovery component
(MIR), called Livingstone [16], monitors the state
of the spacecraft, detects and diagnoses failures and
suggests recovery actions to the Executive.

The Executive subsystem is the focal point of the verifi-
cation work discussed in this article. It combines features
of multi-threaded operating systems with aspects of AI
languages based on sub-goaling, such as Prolog. It is con-
ceptually composed of three layers: a set of core services
that implement a robust operating system for executing
concurrent tasks, a set of engine modules including a plan
runner, and a set of mission-specific task programs. The
Executive schedules the execution of concurrent tasks. It
also monitors a set of properties associated with system
resources, and takes recovery actions on property viola-
tions. The Executive is written in a multi-threaded LISP,
using a set of LISP macros called the Executive Sequenc-
ing Language (ESL) developed at JPL.

2.2 Testing the Remote Agent

Because autonomous systems such as the RA need to re-
spond robustly in a wide range of situations, verifying that
they respond correctly in all situations would require a
huge number of test cases. Furthermore, these tests ide-
ally have to be run on high-fidelity testbeds that are highly
oversubscribed, hard to configure, and, running at real
time speeds, take hours or days for a single run.

To address these problems, the RAX team followed a
“baseline testing” approach, starting from nominal sce-
narios and testing a number of nominal and off-nominal
variations around these scenarios. A wide range of varia-
tions were run on more available and faster low-fidelity
testbeds, leading to the identification and resolution of
100-200 bugs during 18 months. An automated test-
ing tool was designed for this purpose. Some of the

most likely off-nominal variants were run on medium-
fidelity testbeds, while only nominal scenarios and cer-
tain performance and timing related tests were performed
on high-fidelity testbeds. The final stage was a pair of
“dress rehearsal” operational readiness tests (ORTs), in-
volving actual communication with the mission control
center. The bulk of the problems identified during testing
were found with the low-fidelity testbeds. The ORTs only
identified minor shortcomings that were resolved prior to
flight.

2.3 Remote Agent in Flight

On Monday, May 17th, 1999, 11:04 am PDT, a telemetry
packet confirmed that the RA had taken control of DS-
1. The scenario went on smoothly, achieving 70% of the
objectives, until Tuesday 7:00 am, when it became appar-
ent that a command had not been executed as expected
by the RA. The RA Executive was blocked, although the
rest of the RA and the spacecraft were otherwise healthy.
The Executive’s low-level commands were used to gather
a maximum of information, and then the experiment was
interrupted.

By late Tuesday afternoon, the RAX team had found
the source of the problem in the Executive code. They
designed a 6-hour scenario that was run on Friday morn-
ing and went successfully through the remaining 30% of
the objectives. A patch was also generated, but the DS-1
mission decided not to uplink it, considering the insuffi-
cient testing of the patch and the very low probability of
the problem recurring.

The blocking was due to a missing critical section
that had lead to a race condition between two concurrent
threads. Under some very precise and unlikely timing cir-
cumstances, both threads could end up in a deadlock con-
dition in which each one was waiting for an event that
only the other one could provide, which is exactly what
happened in flight.

3 Formal Analysis Before Flight

In April-May 1997 we analyzed part of the RA Executive
using the SPIN model checker [7]. This effort lead to the
discovery of five errors in the LISP code which are de-
scribed below. As discussed in Section 4.3, one of these
errors is isomorphic to the error that actually occurred
during flight, causing a deadlock. First we give a short de-
scription of SPIN and its modeling language PROMELA.

Then we explain how a PROMELA model was extracted
from the LISP code, and how properties were stated and
verified in the model, leading to the discovery of the five
errors. We conclude with a discussion of the methodology
that has been followed.

3.1 The SPIN Model Checker

SPIN [10] is a tool for analyzing the correctness of fi-
nite state concurrent systems with respect to formally
stated properties. A concurrent system is modeled in
the PROMELA modeling language, and properties to be
verified are formalized as assertions in the program or
as formulae in the temporal logic LTL (Linear Temporal
Logic). SPIN provides a model checker, which automat-
ically examines all program behaviors in order to decide
whether the PROMELA program satisfies the stated prop-
erties. In case a property is not satisfied, an error trace
is generated, which illustrates the sequence of executed
statements from the initial state to the state that violates
the property. These error traces can then be executed in
a simulator. The set of states reachable from the initial
state must be finite in case a property needs to be proven
correct for the whole state space.

A PROMELA program consists of a set of sequential
processes that communicate via message passing through
bounded buffered channels and via shared variables. Pro-
cesses can be created dynamically. The behavior of an
individual process is described using the statement lan-
guage which provides many standard constructs such as
variable assignments, channel communications, loops,
conditionals, and sequential composition. Variables are
typed, where a type can either be primitive, such as in-
teger, or composite in the form of arrays and records.
PROMELA provides inline procedures, which is a lim-
ited notion of procedural abstraction that is implemented
via macro expansion.

Each process represents a finite automaton, and the
global behavior of the system is then obtained by comput-
ing on-the-fly an asynchronous interleaving product of all
these automata, creating the global state space. To per-
form model checking, SPIN translates (the negation of)
any LTL formula into a Büchi automaton, and computes
the synchronous product of this and the global state space.
The result is again a Büchi automaton. If the language of
this automaton is empty it means that the formula is sat-
isfied. SPIN searches the state space depth-first, creating
the states on-the-fly. A partial-order reduction technique

is used to prune the set of transitions to be explored.

3.2 Creating a PROMELA Model

The modeling activity focused on the core services of the
plan execution module. The RA Executive core is de-
signed to support execution of software-controlled tasks
on board the spacecraft. A task often requires specific
properties to hold during its execution. When a task is
started, it first tries to achieve the properties on which it
depends, after which it starts performing its main func-
tion. Several tasks may try to achieve conflicting proper-
ties; for example, one task may try to turn on a camera
while another task tries to turn it off. To prevent such
conflicts, a task has to lock in a lock table any property
it wants to achieve. Once, a property is locked, it can be
achieved by the task locking the property.

Properties may, however, be unexpectedly broken
while tasks depending on them are executing. A property
is defined as broken when it is locked in the lock table by
some task, has been achieved (an extra boolean field in
the lock table), but for some reason fails to hold on board
the spacecraft. For the purpose of detecting which prop-
erties hold on board, a database is maintained of all prop-
erties being true at any time. Hence, an inconsistency can
be detected by relating the lock table with the database.
Tasks depending on a broken property must be interrupted
and informed about the anomaly. For this purpose, a dae-
mon monitors the changes on board the spacecraft, and in
particular the consistency between the lock table and the
database. The daemon is normally asleep, but is awak-
ened whenever there is a change in the lock table or the
database, where upon it checks their consistency.

The PROMELA model focuses on operations on the
lock table. Hence, it is an abstraction of the LISP pro-
gram, omitting details irrelevant for the lock table opera-
tions. The LISP program is approximately 3000 lines of
code while the PROMELA model is 500 lines of code.
Furthermore, the model only deals with a limited number
of tasks and properties in order to limit the search space
the SPIN model checker has to explore. Most abstrac-
tions were made in an informal manner without any for-
mal proofs showing that bugs are maintained. Hence, in
the abstraction phase we may have left out errors in the
LISP code. However, all the errors we found in the model
were also errors in the LISP code.

To give an idea of the modeling, we show how the dae-
mon was translated, since it was the daemon that con-

(defun daemon ()
(loop
(if (check-locks)

(do-automatic-recovery))
(unless

(changed?
(+ (event-count *database-event*)

(event-count *lock-event*)))
(wait-for-events
(list *database-event*

lock-event)))))

Figure 1: Daemon in LISP

tained the error pattern which also occurred during flight,
and which was found using the model checker. The actual
LISP code describing the behavior of the daemon is given
in Figure 1.

The daemon goes through a loop, where in each itera-
tion it checks the lock table, comparing it to the database,
and recovers any inconsistencies that may be detected (if
the check-locks function returns true). After that, it
goes to sleep by calling the wait-for-events func-
tion, which as parameters takes a list of events to wait
for. Whenever one of these events is signaled, i.e. the
database or the lock table is modified, the daemon will
wake up and continue.

In order to catch events that occur while the daemon is
executing, each event has an associated event counter that
is increased whenever the event is signaled. The daemon
only calls wait-for-events in case these counters have
not changed, hence, there have been no new events since
it was last restarted from a call of wait-for-events.

The PROMELA model of this LISP code is presented
in Figure 2. The if-construct decides whether the daemon
should stop and wait for a new database event or lock
event to occur (call of wait for events), or whether
it should continue for another iteration. Another itera-
tion is needed if a database event or a lock event has oc-
curred since the daemon was restarted last time; that is, in
case the event counter event count differs from the sum
of the event counters for the database and lock events.
If there is a difference, it means that there has been an
event since the last time event count was updated, and
the daemon must perform another iteration before calling
wait for events, first updating event count to hold
the new event counter sum.

proctype daemon(TaskId this) f
byte event_count = 0;
do
:: check_locks_and_recover;

if
:: (Ev[DATABASE_EVENT].count +

Ev[LOCK_EVENT].count
== event_count)

->
wait_for_events(this,

DATABASE_EVENT,LOCK_EVENT)
:: else ->

event_count =
Ev[DATABASE_EVENT].count +
Ev[LOCK_EVENT].count

fi
od

g;

Figure 2: Daemon in PROMELA

3.3 Stating and Verifying Properties

The model was analyzed with respect to the following
two properties, here expressed informally. The release
property reads: “A task releases all of its locks before it
terminates”. The abort property reads: “If an inconsis-
tency occurs between the database and an entry in the
lock table, then all tasks that rely on the lock will be ter-
minated, either by themselves or by the daemon in terms
of an abort”. The release property was formulated by in-
serting an assertion in the code at the end of each task.
This assertion stated that all locks should be released at
this point. The second property was stated as a linear tem-
poral logic property of the form:

[](property broken -> <>tasks informed)

This property says: whenever a property is broken,
then eventually all tasks depending on this property will
be informed about it (in fact terminated). The names
property broken and tasks informed are macro
names standing for predicates on the state space.

The attempted verification of the two properties led to
the direct discovery of five programming errors – one
breaking the release property, three breaking the abort
property, and one being a non-serious efficiency problem
where code was executed twice instead of once. The first
four of these errors are classical concurrency errors in the
sense that they arise due to processes interleaving in un-
expected ways.

The error we want to focus on in this presentation is the
one isomorphic to the RAX anomaly. The error caused
the abort property to be violated. The error trace gener-
ated by SPIN demonstrated the following situation. The
daemon is prompted to perform a check of the lock table.
It finds everything consistent and checks the event coun-
ters to see whether there have been any new events while
it has been running. This is not the case, and the daemon
therefore decides to call wait-for-events. However,
at this point an inconsistency is introduced, and a signal
is sent by the environment, causing the event counter for
the database event to be increased. This is not detected
by the daemon since it has already made the decision to
wait, which it then does, and the inconsistency now is not
discovered by the daemon. Our suggested solution at the
time was to enclose the test and the wait within a critical
section, which does not allow scheduling interrupts to oc-
cur between the test and the wait. Furthermore, two other
flawed code fragments violated the abort property.

The release property was violated in the sense that
locks did not always get released by a task. The error trace
generated by SPIN demonstrated that during a task’s re-
lease of a lock, but before its actual release, the task may
get interrupted by the daemon if the property gets broken.
This means that the task terminates without releasing the
lock. The error is particularly nasty in the sense that all
code, except the lock releasing itself, had been protected
against this situation: in case of an interrupt the lock re-
leasing would be executed.

The model was verified exhaustively using SPIN’s
partial order reduction algorithm and state compression.
Typically between 3; 000 - 200; 000 states were explored
in the different models, using between 2 - 7 Mb of mem-
ory, and using between 0:5 - 20 seconds.

3.4 Discussion of Methodology

The verification effort has been regarded by all involved
parties as a very successful application of model check-
ing, and of SPIN in particular. According to the RA pro-
gramming team, the effort has had a major impact, lo-
cating errors that would probably not have been located
otherwise, and identifying a major design flaw.

The modeling effort, i.e. obtaining a PROMELA
model from the LISP program, took about 12 man weeks
during 6 calendar weeks, while the verification effort took
about one week. The modeling effort consisted concep-
tually of an abstraction activity combined with a trans-

lation activity. Abstraction was needed to cut down the
program to one with a reasonably small finite state space,
making model checking tractable. Translation, from LISP
to PROMELA, was needed to obtain a PROMELA model
that the SPIN model checker could analyze.

The abstraction was done without any knowledge about
the properties to be verified, since these were stated later.
The abstraction maintained important operations on the
lock table and ignored most other details of the orig-
inal LISP program, hence, a kind of program slicing.
No formal attempt was made to show that the abstrac-
tions preserved errors. It is interesting that such an ad
hoc approach still was extremely effective. The transla-
tion phase was non-trivial and time consuming due to the
relative expressive power of LISP when compared with
PROMELA.

Based on these observations, two research efforts were
initiated that should make application of model checking
within the software development cycle less resource de-
manding. In one effort a translator from the Java pro-
gramming language to PROMELA has been developed;
see Section 4.2. In another effort, an abstraction tool
has been developed, which can perform so-called predi-
cate abstractions on Java programs; see Section 5. Both
tools have been applied in the verification of the RA as
described in the following.

4 Formal Analysis After Flight

Shortly after the anomaly occurred during the Remote
Agent Experiment, on Tuesday May 18, the ASE team
at NASA Ames heard that something had broken down
in the RA while it was in control of the spacecraft and
offered their help to the RAX team. On Friday morning,
after a few email exchanges, the RAX team provided ac-
cess to the source code of the Executive, without identi-
fying where the error was, and offered the ASE group the
challenge of seeing “how long it would take for formal
methods to come up with it”.

On Friday afternoon, we decided to run a “clean room”
experiment to determine whether or not the technology
currently used and under development in the group could
have discovered the bug before it actually happened. At
that time, we knew that debugging information collected
from the spacecraft had enabled the DS-1 team to identify
the bug and continue the experiment, and that the failure
had something to do with a “handshaking” communica-
tion between a Planner process and an Executive process.

Other than these messages we had no further information,
and no one in the ASE group had any contact with RAX
personnel during that week.

This section first describes how the experiment was
conducted. Then the Java PathFinder translator that was
used to model check the flawed code is described. This
is followed by a description of the error and how it was
found using Java PathFinder. We conclude with a discus-
sion of the methodology that has been followed.

4.1 The Clean Room Experiment

To make this clean room experiment credible, we de-
cided that we would need to complete this exercise over
the weekend, prior to the return of the RAX team from
the DS-1 mission control at JPL the following Monday.
This was both to avoid undue influence by people fa-
miliar with the details of the bug, and also to meet the
“short-turnaround” challenge, mimicking what would be
required if we were actually called on to provide “on-line”
assistance.

The experiment was set up as follows. A front-end
group would try to spot the error by human inspection,
or at least identify problematic parts of the code. On the
basis of that, it would extract a more or less self contained
portion of the code containing the problematic code por-
tions, of a tractable size for a model checker. This ex-
tracted code would then be handed over to the back-end
group without any hints as to what could be the error. The
back-end group would then try to locate the error using
model checking. The situation was comparable to some-
one doing visual inspection of code, and finding suspect
sections which he wanted to explore further.

The front-end team began perusing the code on Fri-
day afternoon, and extracted roughly 700 lines containing
questionable code2. The full group met again on Satur-
day afternoon, and the front-end team gave the back-end
team the extracted code. In accordance with the design of
the experiment, they did not tell where the suspected bug
was, but they briefed the back-end team on the control and
data structures of the extracted code. The back-end group
spent most of the time understanding that code in order to
model it, and on Sunday morning came out with a fairly
abstract model of the suspicious code. That model was
written in Java and verified with the Java model checker
Java PathFinder, as described below. It reported a dead-

2Though they were not sure that they had indeed captured the con-
currency error.

lock, which turned out to be the one that had happened in
flight five days before.

4.2 The JPF Translator

Java PathFinder (JPF) [8, 6] is a translator from a non-
trivial subset of Java to PROMELA. Given a Java pro-
gram, JPF translates this into a PROMELA program,
which then can be model checked using SPIN. Java is an
object-oriented programming language with a built-in no-
tion of threads. Objects are instantiated dynamically from
classes, which can be defined using single class inheri-
tance. Threads, which are special objects with an activity,
can communicate by making calls to methods defined in
shared objects. Such methods can be defined as synchro-
nized, thereby turning these shared objects into monitors,
allowing only one thread to operate in the object at a time.

In the default mode, the SPIN model checker will find
any deadlocks present in the Java program. Such dead-
locks can occur when several threads compete for access
to the monitors. Properties can also be formulated explic-
itly by the user, either as assertions in the program, or as
linear temporal logic formulae. That is, a Java program
can be annotated with assertions written as calls to a spe-
cial assert method which takes a boolean argument ex-
pression over the variables in the Java program. Any such
call is translated into a corresponding PROMELA asser-
tion, which will then be checked during the state space
exploration whenever reached. Finally, SPIN’s own lin-
ear temporal logic can be used to formulate properties
over the Java program’s static variables (a static variable
in Java is defined within a class, but is only allocated once,
and hence is shared between all objects of the class).

A significant subset of Java is supported by JPF: dy-
namic creation of objects with data and methods, static
variables and static methods, class inheritance, threads
and synchronization primitives for modeling monitors
(synchronized statements, and the wait and notify

methods), exceptions, thread interrupts, and most of the
standard programming language constructs such as as-
signment statements, conditional statements and loops.

The translator is written in 6000 lines of LISP, and was
developed over a period of 8 months. JPF has been ap-
plied to a number of case studies, amongst them a 1500
line game server [9], a NASA file transfer protocol for
satellites, and a NASA data transmission protocol for the
space shuttle ground control.

A related attempt to provide model checking technol-

ogy for Java is described by Demartini et. al. [5], which
also translates Java programs into PROMELA. However,
their approach does not handle exceptions or polymor-
phism as does Java PathFinder. In another related ap-
proach, Corbett [4] describes a theory of translating Java
to a transition model, making use of static pointer analy-
sis to aid virtual coarsening, which reduces the size of the
model.

4.3 The RAX Error

The suspected and eventually confirmed error was a miss-
ing critical section around a conditional wait on an event.
The relevant piece of code (anonymized for confidential-
ity purposes) is shown in Figure 3.

(loop
(when

(*1*) (or (/= count (esl::event-count event1))
(*2*) (warp-safe (wait-for-event event1)))

(setf count (esl::event-count event1))
; ...

(*3*) (signal-event event2)))

Figure 3: The RAX Error in LISP

This is the body of one of the concurrent tasks and con-
sists of a loop. The loop starts with a when statement
whose condition is a sequential-or statement3 that states:
if the event counter has not been changed (*1*), then
wait (*2*), else proceed. This behavior is supposed to
avoid waiting on the event queue if events were received
while the process was active. However, if the event oc-
curs between (*1*) and (*2*), it is missed and the pro-
cess goes asleep. Because the other process that produces
those events is itself activated by events created by this
one in (*3*), both end up waiting for each other, a dead-
lock situation.

This follows a similar pattern to the code shown in Fig-
ure 1 that had been identified as a source of error during
the verification of the Executive in 1997, as described in
Section 3.3. This similarity was spotted by members of
both the front-end and back-end teams, and contributed
greatly to narrowing down the verification effort to this
particular potential problem.

3(or X Y) is evaluated like if X then true else Y.

4.4 Demonstrating the Error with JPF

The modeling focused on the code under suspicion for
containing the error. The major two components to be
modeled were events and tasks, as illustrated in Figure 4.
The figure shows a Java class Event from which event
objects can be instantiated. The class has a local counter
variable and two synchronized methods, one for waiting
on the event and one for signaling the event, releasing all
threads having called wait for event. Note how the
counter is incremented by signal event in order to al-
low the tasks to check whether new events have arrived.
The increment is modulo 3 in order to reduce the state
space to be searched by the model checker. This is an in-
formal abstraction in the sense that it has not been proven
to preserve errors. Section 5 explains how an alternative
counter abstraction for this program can be made and au-
tomatically proved correct.

class Eventf
int count = 0;

public synchronized void wait_for_event()f
tryfwait();gcatch(InterruptedException e)fg;

g

public synchronized void signal_event()f
count = (count + 1) % 3;
notifyAll();

g
g

class FirstTask extends Threadf
Event event1,event2;
int count = 0;

public void run()f
count = event1.count;
while(true)f

if (count == event1.count)
event1.wait_for_event();

count = event1.count;
event2.signal_event();

g
g

g

Figure 4: The RAX Error in Java

Figure 4 also shows the definition of one of the tasks.
This is an abstraction (in Java) of the LISP code pre-
sented in Figure 3. The task’s activity is defined in the
run method of the class FirstTask, which itself ex-

tends the Thread class, a built-in Java class that sup-
ports thread primitives. The body of the run method
contains an infinite loop, where in each iteration a con-
ditional call of wait for event is executed. The con-
dition is that no new events have arrived, hence the event
counter is unchanged. After having applied JPF, the SPIN
model checker revealed the deadlock situation described
in Section 4.3. In the Java context a new event arrived af-
ter the test (count == event1.count), but before the
call event1.wait for event().

4.5 Discussion of Methodology

The formal analysis of the Executive after the occurrence
of the anomaly was preceded by a code inspection, which
identified the possible source of the error. Some of us
spotted the potential error situation because it resembled
the similar error we had found using SPIN in 1997, as de-
scribed in Section 3.3. Due to the focus on the particular
code fragment, it was relatively easy to perform the ab-
straction needed to extract a Java program with a small
finite state space. This took about two hours. However,
the suspicion was only a suspicion, and a demonstration
that the code was flawed was provided using JPF. This
showed the usefulness of using a model checker to an-
swer focused queries.

Since the original source code was in LISP, we still
had to translate it by hand in Java, which goes against
JPF’s intended purpose. To avoid that, one would need
an abstraction tool and a translator for LISP. Since LISP’s
future within NASA is questionable we have focused on
providing these technologies for Java. Java is a very con-
venient modeling language, providing most of the high
level features of the powerful Common LISP Object Sys-
tem (CLOS), such as dynamically created objects with
methods and data. The major experience with all ex-
periments done with JPF are obviously that a non-trivial
amount of abstraction is needed in order to reduce the size
of a program’s state space. This problem is addressed in
Section 5.

5 An Abstraction Tool for Java

As a part of the JPF project, we have been developing
an automated abstraction tool which converts a Java pro-
gram to an abstract program with respect to user-specified
abstraction criteria. The user can specify abstractions by
removing variables in the concrete program and/or adding

new variables (currently the tool supports adding boolean
types only) to the abstract program. Given a Java pro-
gram and such abstraction criteria, the tool generates an
abstract Java program in terms of the new abstract vari-
ables and unremoved concrete variables. To compute the
conversion automatically, we use a decision procedure,
SVC (Stanford Validity Checker), which checks the va-
lidity of logical expressions [1].

The abstraction tool is designed to deal with object-
oriented programs. The user can specify abstraction cri-
teria for each class by removing field variables in the class
and/or adding new abstract variables to the class. There-
fore, it can be used to abstract subcomponents in a pro-
gram when the whole program is too complicated to ap-
ply abstraction globally. In addition, the user can specify
new abstract variables which depend on variables from
two different classes (inter-class abstraction).

There has been similar work by others [3, 15], all of
which require use of only global variables to describe
a system in simple languages similar to guarded com-
mands. However, our tool targets a real programming lan-
guage Java and is able to deal with many problems caused
by its object-orientation.

5.1 Application of the Tool to the RA

As we do not have enough space in this paper for a de-
tailed explanation of the abstraction algorithm, let us il-
lustrate the abstraction performed by the abstraction tool
on a part of the RA Java code shown in Figure 4. As
stated before, state explosion occurs because of the un-
bounded increase of the count variable in the Event class
(in the original LISP code) and the assignment of the
count variable in the FirstTask class (as well as in
the SecondTask class which is not shown). Therefore,
we use abstraction to remove those count variables by
specifying Abstract.remove(count) in the classes of
Event and FirstTask. In place of these variables, we
add new abstraction predicates which appear in the pro-
gram with the count variables. For instance, we put
Abstract.addBoolean("FcntEqEcnt",

count==event1.count) in the definition of the
FirstTask class to specify an abstraction predicate:
FirstTask.count is equal to Event.count (For im-
plementation convenience, object names are used to re-
fer to class types.). We also used more inter-class ab-
stractions such as FcntGeEcnt (FirstTask.count is
greater than or equal to Event.count), ScntEqEcnt

(SecondTask.count is equal to Event.count), etc.

This is an example of an inter-class abstraction.
Dealing with such inter-class abstractions is more in-
volved than dealing with the abstractions inside one
class. For each inter-class abstraction, the tool gener-
ates an additional class definition in the abstract pro-
gram, which contains new boolean variables correspond-
ing to the specified predicate. The boolean variables
in the new class are defined as a two-dimensional ar-
ray where each index refers to an object in either of
the two classes. In Figure 5, the new abstract variable
FcntEqEcnt.pred[Fobj][Eobj] corresponds to the
user-defined predicate FcntEqEcnt for an object Fobj
of FirstTask class and an object Eobj of Event class,
i.e., Fobj.count = Eobj.count.

Given the abstraction criteria, we now need to compute
the value of the abstract variables in the abstract program
so that they are consistent with the values of concrete vari-
ables in the program. Figure 5 shows how the abstraction
tool converts the assignment statement, count = count

+ 1 (without the modulo operation) in Figure 4. First,
the concrete assignment statement is omitted in the ab-
stract program because the variable to be assigned has
been removed. Instead, the tool checks which of the new
abstract variables are possibly affected by this assign-
ment and generates corresponding assignments to those
abstract variables. For the example statement, a set of
boolean variables that refers to ‘this’ Event object will
be affected: FcntEqEcnt.pred[i][this] in Figure 5
(Actually, we use functions that return the corresponding
index of a given object). To update those abstract vari-
ables, a for-statement is used. For each of the abstract
variables, the pre-images that leads the abstract variable
to be true (or false) by the assignment are computed.
Then the pre-images are mapped into the abstract domain
by checking validity of the corresponding logical expres-
sions. Finally, the results are used as a guard condition
to set the abstract variables to true (or false). In the ex-
ample, the variable FcntEqEcnt.pred[i][this] will
be set to false if it was true (or if some condition with
another abstract variable holds). Otherwise, the variable
is set to a non-deterministic boolean value. Because the
concrete assignment statement is regarded as atomic, a set
of these abstract assignments are declared as atomic for
the JPF model checker. The additional statements for up-
dating other abstract variables such as FcntGeEcnt are
not shown in the figure.

Verify.beginAtomic();
// count = count + 1;
for(int i = 0; i < FcntEqEcnt.numFirstTask; ++i){
if(FcntEqEcnt.pred[i][FcntEqEcnt.getEvent(this)]

|| FcntGeEcnt.pred[i][FcntGeEcnt.getEvent(this)])
FcntEqEcnt.pred[i][FcntEqEcnt.getEvent(this)] =
false;

else FcntEqEcnt.pred[i][FcntEqEcnt.getEvent(this)]
= Verify.randomBool();

}

// similar code for updating other inter-class
// abstract variables such as FcntGeEcnt, etc.
Verify.endAtomic();

Figure 5: Output of the abstraction tool for the assignment
statement

5.2 Discussion of Methodology

Using the tool, we have been able to obtain an abstract
Java program of the RA code automatically. In the exam-
ple, the unbounded integer variables are replaced by a set
of boolean variables, hence the abstract program is free
from the state explosion. Moreover, use of the tool helps
to avoid error-prone abstractions based on human reason-
ing. The tool generates a sound approximation of the
concrete program using an automated validity checker, al-
though it is not necessarily the most accurate one.

However, the user must give reasonable abstraction cri-
teria for the tool to generate a meaningful abstract pro-
gram in order to check some desired properties. In case
the abstraction criteria are not good enough, the result will
be a too rough abstract program which can not preserve
the properties to be checked.

6 Conclusion

This paper describes two major verification efforts carried
out within the Automated Software Engineering Group
at NASA Ames Research Center. The first effort con-
sisted of analyzing part of the RA autonomous space craft
software using the SPIN model checker. One of the er-
rors found with SPIN, a missing critical section around a
conditional wait statement, was in fact reintroduced in a
different subsystem that was not verified in this first pre-
flight effort. This error caused a real deadlock in the RA
during flight in space.

Such concurrency-related errors only happen as the re-
sult of particular scheduling circumstances. Scheduling is
totally uncontrolled when tests are run, and is highly sen-

sitive to variations in the operating environment (e.g. op-
erating system, other running tasks). This explains why
the anomaly happened in flight, though it had not oc-
curred even once in thousands of previous runs on the
various ground testbeds.

Developing the formal model of the program was, how-
ever, a time consuming task, requiring a manual trans-
lation from the RA LISP code to the PROMELA lan-
guage of the SPIN model checker. In addition, code de-
tails had to be abstracted away in order to obtain a small
enough finite state system that could be effectively model
checked. The translation difficulty spawned the initiative
to automate the translation from high level programming
languages to modeling languages for formal verification,
such as PROMELA. Java was chosen as the source lan-
guage because of its modern programming language con-
structs, such as support for object-oriented programming,
and the standardization across implementations of its con-
currency constructs. An automatic translator from Java to
PROMELA was designed and implemented, called Java
PathFinder (JPF). With JPF one can model check smaller
Java programs for assertion violations, deadlocks, and
general linear temporal logic properties. The translator
covers a substantial subset of Java, illustrating the feasi-
bility of the approach.

In the second effort, JPF was used for modeling the
RAX deadlock after it occurred. That is, after the front-
end team isolated a reduced subset of the code that likely
included the error, the back-end team developed a Java
program which exposed the error. The translator trans-
lated this into a PROMELA model, and the model check-
ing of this model then immediately revealed the error.
Java turned out to be an excellent choice as a modeling
language, with a high level of abstraction, due to its object
oriented features. In later work, a system that automates
certain aspects of predicate abstraction was developed and
successfully demonstrated on the same example.

This experience gave a clear demonstration that model
checking can locate errors that are very hard to find with
normal testing and can nevertheless compromise a sys-
tem’s safety. It stands as one of the more successful ap-
plications of formal methods to date. In its report of the
RAX incident, the RAX team indeed acknowledges that
it “provides a strong impetus for research on formal veri-
fication of flight critical systems” [13].

A posteriori, given the successful partial results, one
can wonder why the first verification effort was not ex-
tended to the rest of the Executive, which might have

spotted the error before it occurred in flight. There are
two reasons for that. First, the purpose of the effort was
to evaluate the verification technology, not to validate the
RA. The ASE team did not have the mission nor the re-
sources needed for a full-scale modeling and verification
effort. Second, the part of the code in which the error was
found has been written after the end of the first verifica-
tion experience.

Regarding software verification, the work presented
here demonstrates two main points. First of all, we be-
lieve that it is worthwhile to do source code verification
since code may contain serious errors that probably will
not reveal themselves in a design. Hence, although design
verification may have the economical benefit of catching
errors early, code verification will always be needed to
catch errors that have survived any good practice. Code
will always by definition contain more details than the
design – any such detail being a potential contributor to
failure.

Second, we believe that model checking source code is
practical. The translation issue can be fully automated,
as we have demonstrated. The remaining technical chal-
lenge is scaling the technology to work with larger pro-
grams - programs that could have very large state spaces
unless suitably abstracted. Abstraction is of course a ma-
jor obstacle, but our experience has been that this effort
can be minimized given a set of supporting tools.

Acknowledgments

We would like to thank Erann Gat, the developer of ESL,
for his useful responses to our error reports. We also want
to thank Ron Keesing and Barney Pell, of the RA pro-
gramming team, for explaining parts of the Executive and
suggesting properties to be verified. We also appreciate
Pandu Nayak, Kanna Rajan, Gregory Dorais, and Nicola
Muscettola for their comments on our second verification
effort. Finally, but certainly not least, we want to thank
SPIN’s designer, Gerard Holzmann, for his always reli-
able support during the work.

References

[1] C. Barrett, D. Dill, and J. Levitt. Validity Checking
for Combinations of Theories with Equality. In For-
mal Methods In Computer-Aided Design, volume
1166 of Lecture Notes in Computer Science, pages
187–201. Springer-Verlag, November 1996.

[2] D. Bernard et al. Spacecraft Autonomy Flight Ex-
perience: The DS1 Remote Agent Experiment. In
Proceedings of the AIAA 1999, Albuquerque, NM,
1999.

[3] M. Colón and T. Uribe. Generating Finite-State Ab-
stractions of Reactive Systems using Decision Pro-
cedures. In Proceedings of the 10th Conference on
Computer-Aided Verification, volume 1427 of Lec-
ture Notes in Computer Science, pages 293–304.
Springer-Verlag, July 1998.

[4] J. Corbett. Constructing Compact Models of Con-
current Java Programs. In Proceedings of the ACM
Sigsoft Symposium on Software Testing and Analy-
sis, March 1998. Clearwater Beach, Florida.

[5] C. Demartini, R. Iosif, and R. Sisto. Modeling and
Validation of Java Multithreading Applications us-
ing SPIN. In Proceedings of the 4th SPIN Workshop,
November 1998. Paris, France.

[6] K. Havelund. Java PathFinder, A Translator from
Java to Promela. In Theoretical and Practical As-
pects of SPIN Model Checking – 5th and 6th In-
ternational SPIN Workshops, volume 1680 of Lec-
ture Notes in Computer Science. Springer-Verlag,
July and September 1999. Trento, Italy – Toulouse,
France (presented at the 6th Workshop).

[7] K. Havelund, M. Lowry, and J. Penix. Formal Anal-
ysis of a Space Craft Controller using SPIN. In Pro-
ceedings of the 4th SPIN workshop, Paris, France,
November 1998. To appear in IEEE Transactions of
Software Engineering.

[8] K. Havelund and T. Pressburger. Model Checking
Java Programs using Java PathFinder. To appear
in a special issue of International Journal on Soft-
ware Tools for Technology Transfer (STTT) contain-
ing selected submissions to the 4th SPIN workshop,
Paris, France, 1998, February 1999.

[9] K. Havelund and J. Skakkebæk. Applying Model
Checking in Java Verification. In Theoretical
and Practical Aspects of SPIN Model Checking –
5th and 6th International SPIN Workshops, vol-
ume 1680 of Lecture Notes in Computer Science.
Springer-Verlag, July and September 1999. Trento,
Italy – Toulouse, France (presented at the 6th Work-
shop).

[10] G. Holzmann. The Design and Validation of Com-
puter Protocols. Prentice Hall, 1991.

[11] N. Muscettola. HSTS: Integrating Planning and
Scheduling. Morgan Kaufman, 1994.

[12] N. Muscettola, P. Nayak, B. Pell, and B. Williams.
Remote Agent: To Boldly Go Where No AI Sys-
tem Has Gone Before. Artificial Intelligence, 103(1-
2):5–48, August 1998.

[13] P. Nayak et al. Validating the DS1 Remote Agent
Experiment. In Proceedings of the 5th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space (iSAIRAS-99). ESTEC, Noord-
wijk, 1999.

[14] B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscet-
tola, P. Nayak, M. Wagner, and B. Williams. An Au-
tonomous Spacecraft Agent Prototype. Autonomous
Robots, 5(1), March 1998.

[15] H. Saı̈di and N. Shankar. Abstract and Model
Check While You Prove. In Proceedings of the
11th Conference on Computer-Aided Verification,
volume 1633 of Lecture Notes in Computer Science,
pages 443–454. Springer-Verlag, July 1999.

[16] B. Williams and P. Nayak. A Model-Based Ap-
proach to Reactive Self-Configuring Systems. In
Proceedings of AAAI-96, 1996.

Taking the hol out of HOL

Nancy A. Day
Oregon Graduate Institute

Portland, OR, USA
nday@cse.ogi.edu

Michael R. Donat and Jeffrey J. Joyce
Intrepid Critical Software Inc.

Vancouver, BC, Canada
{Michael.Donat, Jeffrey.Joyce}@intrepid-cs.com

Abstract

We describe a systematic approach to building tools
for the automated analysis of specifications expressed
in higher-order logic (hol) independent of a conven-
tional, interactive theorem proving environment. In
contrast to tools such as HOL and PVS, we have taken
“the hol out of HOL” by building automated anal-
ysis procedures from a toolkit for manipulating hol
specifications. Our approach eliminates the burden of
skilled interaction required by a conventional theorem
prover. Our lightweight approach allows a hol specifi-
cation to be used for diverse purposes, such as model
checking, and the algorithmic generation of test cases.
After five years of experience with this approach, we
conclude that by decoupling hol from its conventional
environment, we retain the benefits of an expressive
specification notation, and can generate many useful
analysis results automatically.

1 Introduction

Formal methods have come a long way. Industrial
standards such as IEC 61508, and DO-178B include
explicit references to the use of formal methods as a
means of increasing confidence in safety-related sys-
tems. Formal methods add precision and checkability
to various aspects of the system development process.

A decade ago, there was a wide chasm between
specialized automated methods such as model check-
ing [6], specification-intensive methods such as the use
of Z [33], and general proof-based reasoning found in
tools such as HOL [16]. The input notations of the
analysis tools matched the analysis capabilities of the
tool. For example, the SMV [26] notation describes
finite state machines, whereas the use of higher-order
logic (hol)1 as the specification language of PVS cor-
responds to the intended use of PVS [28] as an inter-
active theorem prover.

Progress is being made rapidly on bridging this
chasm and uniting the capabilities of the various tools

1We will use “hol” or “Hol” for higher-order logic by itself,
and “HOL” to refer to the HOL theorem proving system.

under one roof. For example, the SCR toolset in-
cludes a consistency checker, a simulator, and links to
a model checker, and a theorem prover [3, 20]. PVS
has integrated a number of automated decision pro-
cedures [27]. Most of these examples are, however,
either application-specific such as the SCR toolset, or
start from a heavyweight theorem prover.

We have been exploring a different point in the de-
sign space of these combined systems. For the past
five years, in an industry/university collaborative re-
search project, we have used hol as a specification no-
tation and applied automated analysis techniques such
as refutation-based approaches (i.e., those that gen-
erate counterexamples), and test generation to these
specifications. We have taken “the hol out of HOL”
by building these automated procedures on top of just
a parser and typechecker to eliminate the burden of
skilled interaction required by a conventional theorem
prover.

The combination of hol with automated analysis
may seem crippled from the beginning: we do not have
all the tools we might need to work with our specifica-
tion. However, our experience shows that less power is
often better. The expressiveness of higher-order logic
allows us to embed more familiar notations within hol.
The difficulties for new users come when the only tool
support available has a high learning curve, and they
struggle to understand the feedback the tool provides
them about their specification. We offer a solution
that lessens the learning curve, delaying the need to
use a theorem prover until the problem requires it and
the user is ready for it.

In Sections 2, and 3 we present our reasons for
choosing to work with higher-order logic outside of
a theorem proving environment. In Section 4, we de-
scribe our toolkit, a collection of cooperating utilities
that manipulate hol expressions in “truth-preserving”
ways, i.e., the result of every transformation could also
have been produced by a formal derivation using infer-
ence rules in HOL. In Section 5, we describe how the
blocks are used in combination to construct analysis
procedures such as symbolic model checking, and test
generation.

Unlike our related presentations of this project [8,
9, 10, 14, 23], in this paper we focus on the capabili-
ties of the tool and how it is engineered. This paper
is intended to be a high-level view of the architecture
of our analysis tool, illustrating how our toolkit facil-
itates significant reuse of components for diverse ap-
plications such as test generation and model checking.
We have also created new analysis methods such as
constraint-based simulation. Our focus on automated
analysis compels us to provide the user with control
of performance factors such as BDD [4] variable order.
We have also created methods that allow us to main-
tain the information necessary to produce readable,
traceable results given in terms of the original spec-
ification. References are provided to more technical
descriptions of the components of our toolkit.

By providing a lightweight interface between a
general-purpose notation and automated analysis, we
offer a middle ground between special-purpose anal-
ysis tools and general-purpose theorem provers. Our
goal is to bring the power of a range of automated
analysis techniques to specifiers without sacrificing
suitability and expressiveness of notation.

2 Why higher-order logic?

Initially, we chose higher-order logic as a specification
notation independently of consideration for tool sup-
port. Our notation S [23] is a syntactic variant of
the object language of the HOL theorem proving sys-
tem. S was also influenced by Z, in that it includes
constructs for the declaration and definition of types
and constants. It was developed to support the prac-
tical application of formal methods in industrial scale
projects. In this section, we explain our reasons for
choosing to work with S.

First, S is a general-purpose notation; it does not
impose any particular style of specification. We have
used it to capture a stimulus-response style of specifi-
cation, as well as embedding other notations such as
statecharts [17], and tables in S [2, 9]. By placing spe-
cialized notations within a general-purpose environ-
ment, we can take advantage of many general-purpose
features such as parameterization, and re-usable aux-
iliary definitions and infrastructure. In the specifica-
tion of an aeronautical telecommunications network
(ATN) written in our embedded statecharts style, we
witnessed these benefits, which reduced the specifica-
tion effort, and resulted in a more concise and read-
able specification [2]. Also, we do not have to repeat
the effort of building analysis tools for particular no-
tations. Once a notation is embedded in S, many of
our analysis tools can be applied.

Second, S is a logic. We have found that uninter-
preted constants in a logic play a key role in allowing

us to match the level of abstraction found in require-
ments specifications. Joyce has called uninterpreted
constants, “a modern-day Occam’s razor”2 and points
out their value in filtering non-essential details and
in improving the readability of the specification [25].
Uninterpreted constants can be used to represent ele-
ments that have meaning to domain experts but whose
definition is irrelevant for analysis of a requirements
specification. For example, many air traffic control
specifications depend on the “flight level” of an air-
craft. The details of how the flight level is determined
may be irrelevant for analysis of some aspects of the
system. The calculation of the “flight level” can be
captured by an uninterpreted constant. Analysis re-
sults produced for a specification hold for any inter-
pretation of the uninterpreted constants. While a fi-
nal specification should be complete including defini-
tions for all the constants, the use of uninterpreted
constants during the process of writing a specification
allows some results to be produced without having to
specify all of the details.

Furthermore, a logic contains quantifiers, which of-
ten allow the expression of formal requirements to
more closely correspond to their expression in natu-
ral language. Quantified statements can be used to
capture domain knowledge that describes the environ-
ment of the specification. The ability to use a quanti-
fier eliminates the need to spell out all instances where
the environmental assumption is relevant.

Finally, S is expressive; while we will never be able
to prove automatically every property of our specifi-
cations, our notation is unlikely to limit adding more
automated analysis capabilities as they are developed.

3 Why not use a theorem
prover?

In our approach, we have focused on automated anal-
ysis of our specifications. There have been a vari-
ety of successful efforts to combine theorem provers
with automated decision procedures, such as PVS and
Forte [1]. Our experience with HOL-Voss [24] suggest
that having the theorem prover control the link to the
decision procedures is not the optimal approach for
automated analysis.

First, the infrastructure of the theorem prover is un-
necessary for automated analysis and makes the ap-
proach clumsy and intimidating to the novice speci-
fier. These difficulties are a factor in industry’s resis-
tance to formal methods. For example, we particularly
wanted to avoid the need to learn a meta-language to

2The Aristotelian principle, often attributed to William of
Occam (1300-1349), that the simplest theory that fits the facts
of a problem is the one that should be used.

accomplish the specification task. Therefore, we made
S the input language to our tool, and have very simple
commands to invoke our analysis procedures. A sec-
ond example is that rewriting by means of tactic appli-
cation was used for expansion of definitions in HOL-
Voss. This step was different for each specification an-
alyzed. We have shown that an automatic technique,
called symbolic functional evaluation, is sufficient for
this task and requires no user intervention.

Second, theorem provers are verification-based anal-
ysis tools. The output of a theorem prover is the con-
firmation of a conjecture. Often, more useful results
of analysis are either evidence that refutes an inter-
pretation of the requirements, or truth-preserving re-
arrangements of the specification in order to distill
atomic behaviour. Refutation-based techniques pro-
duce a variety of results other than just theorems.
For example, when analyzing a table for inconsis-
tency, refutation-based techniques can clearly isolate
the source of the inconsistency. Consequently, it is
easier to interpret the result of a successful refutation
attempt than a failed verification attempt. In using
formal methods for an independent validation and ver-
ification effort, Easterbrook and Callahan abandoned
the use of PVS to carry out completeness and consis-
tency checks because of the difficulty of determining
the source of an inconsistency in a failed proof [15].

Third, the results should be expressed in terms of
the original specification. In contrast to our approach,
translating the specification for input to a specialized
decision procedure often results in output in terms of
the translated version.

Fourth, most theorem provers do not currently pro-
vide hooks to control analysis parameters such as BDD
variable order. To work with large examples, control
over these parameters is absolutely necessary.

Theorem provers definitely have a role to play in
the analysis of complex systems. We advocate an ap-
proach that complements the use of theorem provers
because we work with the same notation. Novice users
and experts can work side-by-side. We have a tool
that translates our S specifications to input for the
HOL theorem prover [23].

4 The Toolkit

Our toolkit consists of techniques that manipulate S
expressions in truth-preserving ways. In this section,
we describe the collection of techniques that are com-
bined to build analysis procedures such as symbolic
model checking. Figure 1 captures the architecture of
our tool. In addition to the specification and com-
mands, the input of semantic definitions allows the
specifier to work with notations, such as statecharts,
embedded in S.

semantic

Model Checking
Symbolic CTL

Simulation

Satisfying
Assignment

Quantification

Variables
Current and Next

Distinguishing

Checking
Interval

Legend:
calls

Abstraction to
Propositional

Logic

Toolkit

commands

Parser /
Typechecker

Completeness,
Consistency,

and Symmetry
Checking

Generation

definitions

specification
hol

Codifying
Domain

Knowledge

Test

Analysis
Procedures

Rewriting

Symbolic
Functional
Evaluation

Figure 1: Architecture

The representation of S expressions is encapsulated
in an abstract datatype. The representation is cre-
ated through the process of parsing and typechecking,
common to all analysis procedures. Analysis proce-
dures consist of a sequence of calls to the toolkit ele-
ments, which manipulate S expressions to accomplish
the analysis task. Each of the toolkit elements are in-
dependent allowing them to be used systematically in
combination to implement analysis procedures. Also
the separation of concerns allows each toolkit element
to evolve, and additional elements be added, without
affecting other components of our tool.

Some of the techniques, such as abstraction to
propositional logic, can also be found in tools such
as PVS. Others, such as symbolic functional evalua-
tion (SFE) for expanding S expressions, we developed
because we wanted to be independent of a theorem
proving environment. In some cases, we rely on syn-
tactic conventions for particular styles of specification.
For example, we distinguish between the stimuli and
responses for test generation based on vocabulary con-
ventions.

We also provide user access to performance tuning
for some of these automated techniques. For example,
while SFE is automatic, the user can control the depth
of evaluation. For BDD-based analysis, we provide a
way to input a variable order.

4.1 Symbolic Functional Evaluation

A specification consists of a collection of constant def-
initions, and declarations of types and constants. If
we are using an embedded notation, then a set of se-
mantic definitions is added to this collection. Often,

the first step in analysis is to expand all of these defi-
nitions to determine the meaning of the specification.

Symbolic functional evaluation [8] (SFE) is a tech-
nique that we developed to “evaluate” or unfold S ex-
pressions, i.e., carry out the logical transformations of
expanding definitions, beta-reduction, and simplifica-
tion of built-in constants in the presence of quantifiers
and uninterpreted constants. It extends mechanisms
from functional language evaluation to carry out lazy
evaluation of S expressions. Unlike using quote sym-
bols in a language such as Lisp, SFE gives the user
control over the depth of evaluation. We illustrate
this control with the following declarations and defi-
nitions:

z1 : num;
f1, f2, f3 : num→ num;
z2 = f1(z1);
z3 = f2(z2);
f4(a) = f3(a);

The constants z1, f1, f2, and f3 are uninterpreted.
When we evaluate the expression f4(z3), we can in-
struct SFE to evaluate to one of three levels of eval-
uation. At the level of “complete” evaluation, it is
expands all the definitions and returns the expres-
sion f3(f2(f1(z1))). At the “point of distinction” level,
SFE stops after it determines the tip of the expression
is an uninterpreted function, and returns f3(z3). One
further level called “evaluated for rewriting” proved
useful and evaluates the arguments of an uninter-
preted function at the tip to the point of distinction.
In this case, it would return f3(f2(z2)).

The choice of level of evaluation is linked with the
choice of abstraction to be used for the automated
analysis. For example, when abstracting an expres-
sion to propositional logic (see Section 4.3), the point
of distinction level is most appropriate because any
details revealed by evaluation are lost in abstraction.

Our implementation benefits from the use of struc-
ture sharing in the representation of expressions, and
caching of results.

SFE can be used to carry out symbolic simulation
of specifications of hardware circuits as has been done
previously in theorem provers, e.g., [34, 35].

SFE provides functionality similar to that of PVS’s
experimental ground evaluation, which translates a
subset of PVS into Lisp for evaluation [32]. How-
ever, SFE works for any expression in higher-order
logic, including uninterpreted functions, and quanti-
fiers. Our levels of evaluation provide a systematic
means of controlling evaluation of these symbolic ex-
pressions. A second difference is that we use SFE as
the first step in the analysis process. In PVS, evalu-
ation currently is stand-alone and does not affect the
proof process. For our purposes, SFE is sufficiently
fast for large specifications, however the PVS ground

evaluation is no doubt faster using existing Lisp eval-
uation and destructive updates where possible.

4.2 Rewriting

Once a specification has been sufficiently unfolded,
several analyses require logical manipulation of the
resulting S formula. A rewrite toolkit component is
useful for performing this task. For example, the fol-
lowing set of rewrite rules could be used to rewrite a
specification so that negation (¬) is only applied to
predicates:

∀X,Y.X ⇒ Y = ¬X ∨ Y
∀X,Y.¬(X ∧ Y) = ¬X ∨ ¬Y
∀X,Y.¬(X ∨ Y) = ¬X ∧ ¬Y

∀X.¬¬X = X
∀P.¬∀x.P (x) = ∃x.¬P (x)
∀P.¬∃x.P (x) = ∀x.¬P (x)

Some analysis algorithms can be implemented as
a series of rewriting operations. An example is the
derivation of tests from an S specification using a series
of sets of rewrite rules [10, 13]. Implementing the test
generator using rewriting is a better way to preserve
logical soundness than an implementation as a series
of ad-hoc manipulations.

Our lightweight rewrite system differs from some
well-known rewrite systems, such as the one found in
HOL. For performance reasons, our rewrite system co-
operates with other means of simplification such as
evaluating expressions with concrete values. The user
of the rewrite system must ensure that each set of
rewrite rules is confluent – otherwise, rewriting may
not terminate. The user must also ensure that the
rewrite rules are themselves sound. The checking of
the rules need only be performed once as part of the
development of an analysis procedure, and can be ac-
complished using a theorem prover such as HOL or
PVS.

Rewrite rules are stated as universally quantified
equalities, e.g., ∀x.E1(x) = E2(x), where x is a vec-
tor of variables. For rules specifying rewrites involv-
ing quantifiers and lambda abstraction: 1) variable
capture is avoided using alpha conversion; and 2) if
variable release occurs, the rewrite fails.

The concept of variable release is the opposite of
variable capture. During rewriting, if a variable is
quantified in an expression matching the left-hand
side of the rewrite rule and is not quantified in the
corresponding instance of the right-hand side, vari-
able release has occurred. For example, applying the
rewrite rule ∀P,Q.(∀x.P ∨ Q) = ((∀x.P) ∨ Q) to
∀x.f(x) ∨ y succeeds. However, applying the same
rule to ∀x.f(x)∨ g(x) fails because the x of g(x) is re-
leased, i.e., x is no longer quantified because it was free

in Q. The rewrite system also recognizes alpha equiv-
alence, e.g., (λx.E(x)) = λa.E(a). By failing rewrites
in which variable release occurs and recognizing alpha
equivalence, we are able to describe as rewrite rules
quantifier manipulation that requires conversions in a
theorem prover.

The rewrite system provides routines for applying
a single rewrite to an expression, or to an expression
and all its subexpressions. Sets of rules can also be ap-
plied. The depth of a rewrite operation can be limited
by providing a call-back function that examines the
current subexpression and signals the rewrite system
to continue with this subexpression or go no deeper.

4.3 Abstraction to Propositional Logic

By abstracting our specifications to propositional
logic, we can produce conservative analysis results au-
tomatically. As in Rajan [29], we decompose our S ex-
pression based on the logical operators of conjunction,
disjunction, and negation. The fragments are assigned
unique Boolean variables with alpha-equivalent subex-
pressions matched to the same variable. We maintain
a table matching the fragments to their Boolean vari-
ables to apply and reverse this process.

We also deal with enumerated types so that they are
represented by multiple, related Boolean variables as
in Ever [22]. Sections 4.5 and 4.7 discuss elements of
the toolkit that complement this abstraction process.

We represent the expressions built from the Boolean
variables using BDDs. A key to making this process
efficient is to cache the match between S expressions
and BDD expressions. Once a BDD expression is cre-
ated, an analysis procedure can manipulate it with
the usual BDD package operations such as negation,
conjunction, and quantification.

BDD variable order affects the size of the BDD rep-
resentation of our S expression. For small examples,
it is sufficient to create the BDD variable as needed
in the abstraction process, but for larger examples, a
better method was required. In PVS, it is possible
to request that dynamic variable order be carried out
within the BDD package doing propositional simpli-
fication [31]. But, we found it critical to have direct
support for providing the abstraction process with a
BDD variable order to allow us to reuse a good order,
as well as store and manipulate abstractions of ex-
pressions. Furthermore, we wanted the variable order
stated in terms of expressions of the specification, not
in terms of the Boolean variables that are substituted
for those expressions during abstraction.

Therefore, we developed a way of supplying a
variable ordering for BDDs as a list of S expres-
sions. There are three types of substitutions: a single
Boolean variable matched with a Boolean S expres-

sion, partitions discussed in Section 4.5, and enumer-
ated types. Each type of substitution is accompanied
by a list of numbers giving the position in the order
of the Boolean variables used to represent the S ex-
pressions. We provide some utilities to help the user
determine a good variable order by subcontracting the
problem to existing verification tools such as the Voss
Verification System [30]. Further details on our ap-
proach can be found in Day [7].

Creating a Boolean abstraction of an S expression
and then reversing the process, can be a useful method
of simplifying expressions that include quantification
over Boolean variables. The resulting expression is
logically equivalent to the original. Our tool provides
a command that evaluates an expression to the de-
sired level of evaluation using SFE, creates a BDD
representation of the expression, and then creates an
S expression from the BDD. We used this process in
constructing a large next state relation by construct-
ing conjuncts representing concurrent states individu-
ally first.

4.4 Distinguishing Current and Next
Values

Specifications written in notations such as finite state
machines describe a next state relation. Since S has
no built-in notion of dynamic behaviour, a means is
required to distinguish the value of a variable in the
current state from its value in the next. Our toolkit
implements three approaches to this problem based on
syntactic conventions.

The first approach is to make each variable a func-
tion mapping system states to values for that variable,
similar to the concept of variables as functions of time.
The approach is well-suited for embedded state tran-
sition notations, where the system state is implicit in
the use of the variable. In this approach, we avoid
the need to group the variables in a record structure
explicitly as has been done in PVS [29].

To support this approach to handling dynamic
behaviour, an element of the toolkit separates the
Boolean variables representing the current state val-
ues from those for next state values after abstraction
to propositional logic. In the semantics for embedded
notations, we adopt the syntactic convention that the
variable cf represents the current state, and cf ′ the
next state, thus a Boolean expression such as x(cf ′)
refers to the value of the variable x in the next state.
Expressions such as y(cf ′) = (y(cf) + 1) that contain
both cf and cf ′ are considered as one Boolean variable
belonging to the next state.

A second approach is to adopt the convention of Z,
where a prime (′) is used to distinguish current state
values from next state values. Thus, in the specifi-

cation (z = g(x, 5)) ⇒ (z′ = g(x, 10)), z = g(x, 5)
refers to the current state because it does not contain
a primed variable. The presence of z′ indicates that
z′ = g(x, 10) is a condition on the next state.

A third approach uses the syntactic convention that
a literal beginning with a lower case letter indicates a
next state predicate. A command can specifically label
a literal as referring to either state, overriding this con-
vention. This mechanism is appropriate in situations
where the vocabulary used to specify next state values
is different from that of specifying current state values,
e.g., some applications of system-level requirements-
based testing [14].

In some cases, the convention used to distinguish
values in time is intrinsically linked to the type of anal-
ysis, and cannot be supported by an independent part
of the toolkit. For example, the test generation pro-
cess guides the rewrite system to distinguish stimuli
from responses, placing expressions in certain forms.

4.5 Interval Checking

The process of abstracting to propositional logic is
very conservative. It abstracts expressions such as
x < 5, (5 ≤ x ∧ x ≤ 10), and 10 < x to unrelated
Boolean expressions, potentially causing the analysis
results to return impossible cases. In this section, we
consider options for avoiding this difficulty. One ap-
proach is to rewrite predicates involving inequalities
into a canonical form to find relationships between ex-
pressions such as x < 5 and 5 > x. However, this fails
to capture the relationship between x < 5 and 10 < x.
A second alternative is to use an external tool to add
constraints based on the numeric relationships [5].

Instead of any of these choices, we chose a simple
approach that was complementary to the process of
abstracting to propositional logic, and that depended
on the structure of the notation. Our approach treats
related expressions that partition a numeric value as
an enumerated type. Based on known structure of
a particular notation, we can identify some related
expressions without a global search of the complete
specification. We encountered linear inequalities in
tabular specifications where the cells of a row of a
table partitioned the values of a numeric expression.

We can identify the row structure within the speci-
fication by searching for the Row keyword used in the
embedding of the tabular notation. To exploit the
structure we extended our tool with a registry mech-
anism such that when certain keywords are encoun-
tered by SFE, particular procedures are carried out.
The Row keyword is associated with a simple “inter-
val checking” algorithm that takes the list of expres-
sions in a row and determines if they represent a non-
overlapping partition. Our registry mechanism makes

it possible to extend easily SFE with other structure-
specific rules.

In our current implementation, interval checking
works for S expressions that contain numeric compar-
ison operators and have a concrete value on at least
one side of the operator. Interval checking also returns
any ranges not used in the row entries. By treating the
partition as an enumerated type, the related numeric
expressions are encoded as related Boolean variables
in the abstraction process.

4.6 Readable Results

A significant challenge in requirements analysis is re-
turning results that are understandable and in the
same terms as the specification despite the abstrac-
tions used in analysis. One step towards this goal is
maintaining the information to reverse the Boolean
abstraction as described in Section 4.3.

We are able to produce even better results by track-
ing information through the expansion and logical ma-
nipulation processes of SFE and rewriting.

4.6.1 Unexpansion

Through an enhancement of the representation of S
expressions, we are able to return an expression in its
unevaluated, and usually more compact, form. Tech-
nically, lazy evaluation replaces a subexpression with
its evaluated form, so the work of evaluation is done
only once for all common subexpressions. We have
modified our representation of expressions to include
a pointer to the original, unevaluated version of the
expression.

At the expense of memory, we are able to keep both
the evaluated and unevaluated forms of the expres-
sions during SFE. Some analysis procedures choose
to output the unevaluated form of the expression to
present a more abstract representation of the output.

4.6.2 Traceability

Unexpansion is not sufficient when manipulations
other than expansion are performed. For analyses that
perform rewriting, it is often critical that the results
be traceable to their source in the specification.

For example, tests generated from a specification
are logical consequences of it. If a test is produced
that represents clearly unintended behaviour, then its
source in the specification needs to be located before
it can be corrected. In the case of a non-trivial in-
put specification, identifying the source of a test can
be surprisingly difficult especially when there is signifi-
cant “collaboration” between individual requirements.

An extension to our parser allows subexpressions
within the S specification to be tagged with user de-

fined identifiers [11]. This use of identifiers is consis-
tent with many requirements specification techniques
now used in industry. During rewriting, the tags are
propagated. By displaying these tags with the analysis
results, the source of the results can be determined.

4.7 Quantification

Our specifications can include quantifiers. In abstrac-
tion, a quantified subexpressions can be treated as a
single Boolean variable for the purpose of automated
analysis. However, we can do better than this con-
servative approach in certain circumstances. The sub-
stitutions described in this section can be done either
during SFE or rewriting, or as a separate function.

For quantified variables of types with a finite num-
ber of members we can substitute the possible values
for the variable, e.g., universal quantification over a
finite set of values can be expanded into a conjunction
of conditions. For example, given the following type
definition and predicate declaration:

: chocolate := Cadburys | Hersheys | Rogers;
tastesGood : chocolate→ bool;

the expression

∀(x : chocolate).tastesGood(x)

can be rewritten as:

tastesGood(Cadburys) ∧
tastesGood(Hersheys) ∧
tastesGood(Rogers)

For quantified variables of infinite or uninterpreted
types, we have experimented with methods for instan-
tiating universally quantified variables. When the an-
tecedent of a logical implication is a universally quan-
tified term, the universally quantified variable can be
instantiated by any uninterpreted constant of the ap-
propriate type. This substitution is a form of pre-
condition strengthening. Because (∀x.P (x)) ⇒ P (a),
we can prove (∀x.P (x)) ⇒ Q by proving P (a) ⇒ Q.
This substitution is useful as part of various analysis
tasks such as completeness and consistency checking.
It transforms constraints on the environment stated
in terms of quantification into a non-quantified form
that can be used in automated analysis. For example,
given the following declarations and definitions,

A,B : flight;

env = ∀(f : flight).
¬(is flying level(f) ∧ is climbing(f));

in a specification, we use the instances of the univer-
sally quantified environmental constraint for A and B,

namely:

¬(is flying level(A) ∧ is climbing(A)) ∧
¬(is flying level(B) ∧ is climbing(B))

We found this form of substitution very useful for en-
vironmental assumptions, which are often stated with
universal quantification.

The approach used in test generation is based on
a test coverage point of view. The user identifies the
type of a quantified variable, treated as a set, as either
static or dynamic. A type is dynamic if it can be
different in different contexts of the specification. For
example, quantification over the “flight” type might
be dynamic, since there can be different numbers of
aircraft within an airspace at any given time. A type
is static if it is not dynamic, e.g., the set of natural
numbers is a static specification element.

When a quantified variable has a type that is a dy-
namic set, we consider what instances of the type
should be analyzed to ensure adequate coverage in
testing. This type of simplification can be performed
in at least three modes: none, single, or all. In the
“single” mode of coverage, for the expression:

∀x : X. P1(x) ∨ P2(x) ∨ . . . ∨ Pn(x)

we substitute a single value of type X, because this
expression can be satisfied if one value has one of the
properties Pi. For example if the type X contains a
value c, the quantified expression above would be re-
placed by P1(c). In the “all” mode, we substitute n
points, each one addressing a different Pi. Any con-
stants introduced must be new, and free in the speci-
fication.

4.8 Codifying Domain Knowledge

Domain knowledge, or environmental assumptions,
are conditions that must be taken into account during
analysis to disregard infeasible combinations of con-
ditions, and simplify expressions. In system-level re-
quirements, we found there are relatively few depen-
dencies between conditions, and therefore these can
be expressed concisely using quantified axioms.

For some types of analysis, domain knowledge can
be combined with the specification in the analysis. It
is the antecedent of the analysis goal, or conjuncted
with the symbolic representation of the state set to
enforce the constraint. In these cases, the substitu-
tion of relevant constants in the quantified expression
described in Section 4.7 proved very useful.

In other types of analysis, such as test generation we
cannot combine the statements of the domain knowl-
edge with the specification because every part of the
output must be traceable to the inputs. For these

cases, we identified three schemata that capture the
form of many of the axioms that are often used:

1. ∀x.G⇒ MutEx[P1(x);P2(x); . . . Pn(x)],

2. ∀x.G⇒ Subsm[P1(x);P2(x); . . . Pn(x)], and

3. ∀x.G⇒ States[P1(x);P2(x); . . . Pn(x)].

These schemata map the problem of simplifying an ex-
pression containing elements that match the patterns
given in the schemata list to the problem of satisfying
the guard G for the same instance of x. For exam-
ple, conditions that form partial orders can be defined
using Subsm. Conditions on the right subsume con-
ditions on the left in the Subsm list. The statement
∀x, y, z.x < y ⇒ Subsm[x < z; y < z] captures the
information that if k < i then i < j ⇒ k < j. The op-
tional guard G, in this case x < y, provides a means of
converting the dependency into a standard domain for
which the analysis tool has a decision procedure. An
expression such as 5 < x∧ 10 < x, is simplified by the
schemata to 10 < x because it can check 5 < 10. The
MutEx form is used to define dependencies between
mutually exclusive conditions. The States form de-
fines conditions that represent a set of states; exactly
one is true. These forms, combined with the pattern-
matching capabilities provided by the rewrite system,
are a powerful method of allowing the user to provide
input to the tool as domain knowledge.

Though we found that the above approaches meet
our needs, they have certain limitations. First, when
there are more dependent relationships dictated by the
environment, a formal model of the environment may
be more concise than just axioms. Second, for more
complex relationships it may be more efficient to pro-
vide a specially coded decision procedure, rather than
pattern matching and basic evaluation to simplify ex-
pressions.

5 Analysis Procedures

The procedures in our toolkit are combined together
to form analysis procedures. In this section, we de-
scribe the procedures we have applied in examples.
Table 1 is a partial list of the commands currently
available in our tool.

5.1 Generating a Satisfying Assign-
ment

To further one’s understanding of the meaning of a
complicated Boolean S expression, it can be useful to
examine a satisfying assignment for that expression.
This analysis procedure first expands any defined sym-
bols in the expression using symbolic functional eval-
uation, and then constructs a Boolean abstraction of

the expression represented as a BDD. The user chooses
the evaluation level for SFE. Using an algorithm found
in the Voss system due to Seger, we provide two pos-
sible ways of producing a satisfying assignment. One
attempts to choose as many true assignments to vari-
ables as possible and the other has preference for false
assignments.

5.2 Symbolic CTL Model Checking

Our model checking procedure takes constants with
definitions that are 1) a CTL formula, 2) a next state
relation, 3) an initial condition, and 4) an optional
environmental constraint. We have a representation
of CTL formula as an S datatype. Internally the ex-
pression representing the CTL formula is decomposed
to invoke procedures based on the definitions of the
component formulae. The next state relation, initial
condition, and environmental constraint are all evalu-
ated using SFE, and abstracted to propositional logic
as a BDD. The current and next state variables are
determined for the next state relation.

We currently have counterexample generation for
AG and EF CTL formulae.

5.3 Simulation

For state machine specifications, a non-exhaustive
form of configuration space exploration is simulation.
The presence of uninterpreted constants in the speci-
fication forces our simulation to be symbolic.

Our analysis procedure does simulation based on
the BDD representing the next state relation and con-
straint satisfaction. The user can constrain the set of
assignments possible for the initial state and each sub-
sequent state using a list of conditions. A particular
assignment to the Boolean variables is chosen at each
step. This assignment becomes the previous config-
uration for the next step. By choosing a particular
assignment each time, this form of simulation does
not encounter the state space explosion problem as in
model checking.

A sequence of steps may not exist that satisfies the
listed conditions. An arbitrary choice of a particular
state that satisfies the constraints made early in the
simulation may result in a satisfying sequence of steps
not being found when one does exist. An alternative,
slightly more expensive, analysis procedure carries out
“one-lookahead”. At each step, it chooses a configu-
ration that satisfies the applicable constraint and has
a next state that satisfies the next constraint in the
list.

Command Action
%setorder <const> use the BDD variable order given by the

expression list <const>
%save_bdd <const> <fname> save a BDD associated with a constant in the file
%load_bdd <const> <fname> load a BDD from the file into constant
%bddsimp <const> <ret_c> simplify <const> using BDDs; put result in <ret_c>
%bddsatisfies <const> using BDDs, provide a satisfying assignment
%ctlmc <ctl> <nsr> <ic> <env> do symbolic CTL model checking given next state relation,

initial condition, and environmental assumption
%simulate <nsr> <c_list> simulate the next state relation by satisfying the

constraint list in each step
%comp <const> <env> do completeness check of a tabular expression
%cons <const> <env> do consistency check of a tabular expression
%sym <const> <env> do symmetry check of a two-parameter tabular expression
%tcg <options> <const> produce test classes and test frames for <const>

Table 1: Analysis Commands

5.4 Completeness, Consistency, and
Symmetry Checking

We use the same criteria as Heimdahl and Leve-
son [19], and Heitmeyer et al. [21] for the complete-
ness and consistency of tabular specifications. Com-
pleteness analysis evaluates the expression consisting
of the disjunction of the table’s rows using SFE. After
Boolean abstraction, we check if the expression is a
tautology. If not, we reverse the abstraction, and use
unexpansion to produce results in a column format,
enumerating the cases that are not covered in the ta-
ble. This presentation is possible because SFE main-
tains the unevaluated versions of expressions, and it
addresses some of the problems identified by Heimdahl
in tracing the source of inconsistencies through nested
tables where the output is completely expanded [18].

A similar procedure is carried out for consistency
checking, where all pairs of columns are checked for
overlap.

For symmetry checking, the analysis procedure con-
structs two versions of a two-parameter table with the
parameters swapped, and checks if the two tables are
the same.

5.5 Test Generation

System-level requirements-based test generation is an
analysis that makes extensive use of rewriting. The
rewrite rules used were verified using HOL. The S
specification is assumed to be a relation between the
stimuli and responses of the system.

After unfolding the specification to the desired
level of detail, the resulting formula is transformed
into its logically equivalent Test Class Normal Form
(TCNF) [10, 13]. The TCNF is a conjunction of test

classes, which describe particular stimulus/response
behaviours as implications with the stimuli in the an-
tecedent and responses in the consequent.

The antecedents of the test classes are rewritten fur-
ther to reduce the size of quantified subexpressions.
Choices (disjuncts) within an antecedent represent dif-
ferent test descriptions, referred to as test frames. A
test frame is a test class that has no choice in the
antecedent (other than instantiation). Domain knowl-
edge is applied to simplify the test frames, and remove
any that are infeasible.

Test frames are the results of the analysis, and are
logical consequences of the given specification. Test
frames are selected to cover the Boolean function rep-
resented by the test class antecedent using BDDs. The
selection of test frames is determined by one of several
coverage criteria chosen by the user.

6 Conclusions

We have described a lightweight approach for applying
automated analysis techniques to higher-order logic
specifications. To support this approach we have cre-
ated utilities that manipulate higher-order logic ex-
pressions in truth-preserving ways. These utilities
handle the features of a logic, such as uninterpreted
constants and quantification, in evaluation and ab-
straction.

We have demonstrated that a common core of utili-
ties allows us to implement diverse analysis procedures
such as test generation, and model checking. The com-
mon toolkit facilitates re-use of code and extension
of the suite of analysis procedures with new methods
such as symmetry checking and constraint-based sim-
ulation. We have also shown methods particular to

embedded notations can be created such as the com-
pleteness and consistency analysis of tables.

Two other innovations of our approach are: we allow
users to control performance factors such as BDDs in
terms of the language of the specification; and through
the analysis process we maintain information that pro-
duces readable, traceable results in the language of the
specification.

Space does not permit us to describe the real-world
examples that we have specified and analyzed using
our tools. Examples include an aeronautical telecom-
munications network (ATN) [2, 7], a separation min-
ima for aircraft [9, 12], a small heating system [7], a
steam boiler control system [13], and parts of a pro-
prietary air traffic management system [14]. These
examples are non-trivial. For example, the parame-
terized formal ATN statechart specification is approx-
imately 43 pages. The expanded S representation of
the ATN next state relation consists of 52 076 nodes
in a canonical form.

In the future, we would like to explore how other
automated abstraction techniques can be used in our
framework. For example, less conservative results can
be achieved by abstracting to a variant of first-order
logic. We would like to explore decomposition strate-
gies to lessen the state space explosion problem. Our
approach, which uses the same specification language
as a high-powered tool where these strategies can be
verified, allows experts to hard code their verification
method to make it accessible to non-experts.

7 Acknowledgments

The first author is supported by Intel, NSF (EIA-
98005542), USAF Air Materiel Command (F19628-
96-C-0161), and the Natural Science and Engineer-
ing Research Council of Canada (NSERC). This
paper is based on results produced by the for-
malWARE research project supported by the BC
Advanced Systems Institute, Raytheon Systems
Canada, and MacDonald Dettwiler. Details on
the formalWARE research project can be found at
http://www.cs.ubc.ca/formalWARE.

References

[1] Mark D. Aagaard, Robert B. Jones, and Carl-
Johan H. Seger. Lifted–FL: A pragmatic imple-
mentation of combined model checking and theo-
rem proving. In TPHOLs, number 1690 in LNCS,
pages 323–340. Springer, 1999.

[2] J. H. Andrews, N. A. Day, and J. J. Joyce. Us-
ing a formal description technique to model as-

pects of a global air traffic telecommunications
network. In FORTE/PSTV, 1997.

[3] Myla M. Archer, Constance L. Heitmeyer, and
Stever Sims. Tame: A PVS interface to simplify
proofs for automata models. In User Interfaces
for Theorem Provers, 1998.

[4] Randal E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Trans. on
Comp., C-35(8):677–691, August 1986.

[5] William Chan, Richard Anderson, Paul Beame,
and David Notkin. Combining constraint solving
and symbolic model checking for a class of sys-
tems with non-linear constraints. In CAV, volume
1254 of LNCS, pages 316–327, 1997.

[6] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Au-
tomatic verification of finite-state concurrent sys-
tems using temporal logic. ACM Transactions on
Programming Languages and Systems, 8(2):244–
263, April 1986.

[7] Nancy A. Day. A Framework for Multi-Notation,
Model-Oriented Requirements Analysis. PhD
thesis, Dept. of Comp. Sci, Univ. of British
Columbia, 1998.

[8] Nancy A. Day and Jeffrey J. Joyce. Symbolic
functional evaluation. In TPHOLs, volume 1690
of LNCS, pages 341–358. Springer, 1999.

[9] Nancy A. Day, Jeffrey J. Joyce, and Gerry Pel-
letier. Formalization and analysis of the sepa-
ration minima for aircraft in the North Atlantic
Region. In Lfm, pages 35–49. NASA Conference
Publication 3356, September 1997.

[10] Michael R. Donat. Automating formal
specification-based testing. In TAPSOFT,
volume 1214 of LNCS. Springer, April 1997.

[11] Michael R. Donat. Automatically generated test
frames from a Q specification of ICAO flight plan
form instructions. Technical Report 98-05, Dept.
of Comp. Sci, Univ. of British Columbia, April
1998.

[12] Michael R. Donat. Automatically generated test
frames from an S specification of separation min-
ima for the North Atlantic Region. Technical Re-
port 98-04, Dept. of Comp. Sci, Univ. of British
Columbia, April 1998.

[13] Michael R. Donat. A Discipline of Specification-
Based Test Derivation. PhD thesis, Depart-
ment of Computer Science, University of British
Columbia, 1998.

[14] Michael R. Donat and Jeffrey J. Joyce. Apply-
ing an automated test description tool to testing
based on system level requirements. In INCOSE,
1998.

[15] Steve Easterbrook and John Callahan. Formal
methods for V & V of partial specifications:
An experience report. In RE, pages 160–168, An-
napolis, MD, 1997.

[16] M.J.C. Gordon and T.F. Melham, editors. In-
troduction to HOL. Cambridge University Press,
1993.

[17] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computing, 8:231–
274, 1987.

[18] Mats P. E. Heimdahl. Experiences and lessons
from the analysis of TCAS II. In ISSTA, pages
79–83, January 1996.

[19] Mats P.E. Heimdahl and Nancy G. Leveson.
Completeness and consistency in hierarchical
state-based requirements. IEEE Trans. on Soft.
Eng., 22(6):363–377, June 1996.

[20] Constance Heitmeyer, James Kirby, Bruce
Labaw, and Ramesh Bharadwaj. SCR*: A
toolset for specifying and analyzing software re-
quirements. In CAV, volume 1427 of LNCS, pages
526–531. Springer, 1998.

[21] Constance L. Heitmeyer, Ralph D. Jeffords, and
Bruce G. Labaw. Automated consistency check-
ing of requirements specifications. ACM Transac-
tions on Software Engineering and Methodology,
5(3):231–261, July 1996.

[22] Alan J. Hu, David L. Dill, Andreas J. Drexler,
and C. Han Yang. Higher-level specification and
verification with BDDs. In CAV, volume 697 of
LNCS. Springer, 1993.

[23] J. Joyce, N. Day, and M. Donat. S: A machine
readable specification notation based on higher
order logic. In International Workshop on the
HOL Theorem Proving System and its Applica-
tions, pages 285–299. Springer, 1994.

[24] J. Joyce and C-J. Seger. Linking BDD-based sym-
bolic evaluation to interactive theorem-proving.
In DAC. IEEE Computer Press, 1993.

[25] Jeffrey Joyce. Multi-Level Verification of Micro-
processor Based Systems. PhD thesis, Cambridge
Comp. Lab, 1989. Technical Report 195.

[26] Kenneth L. McMillan. Symbolic Model Check-
ing. PhD thesis, Carnegie Mellon University, May
1992.

[27] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and
M. Srivas. PVS: Combining specification, proof
checking, and model checking. In CAV, volume
1102 of LNCS, 1996.

[28] S. Owre, J.M. Rushby, and N. Shankar. PVS: A
prototype verification system. In CADE, volume
607 of LNCS, pages 748–752, 1992.

[29] P. Sreeranga Rajan. Transformations on Data
Flow Graphs: Axiomatic Specification and Effi-
cient Mechanical Verification. PhD thesis, Dept.
of Comp. Sci, Univ. of British Columbia, 1995.

[30] Carl-Johan H. Seger. Voss - a formal hardware
verification system: User’s guide. Technical Re-
port 93-45, Dept. of Comp. Sci, Univ. of British
Columbia, December 1993.

[31] N. Shankar, S. Owre, J. M. Rushby, and D.W. J.
Stringer-Calvert. PVS prover guide, September
1999. Version 2.3.

[32] Natarajan Shankar. Efficiently executing PVS.
Draft Final Report for NASA Contract NAS1-
20334, Task 11. Computer Science Laboratory,
SRI International, November 30, 1999. (also see
http://pvs.csl.sri.com/experimental/eval.html).

[33] J.M. Spivey. Understanding Z. Cambridge Uni-
versity Press, Cambridge, 1988.

[34] John P. Van Tassel. A formalization of the VHDL
simulation cycle. In Higher Order Logic Theo-
rem Proving and its Applications, pages 359–374.
North-Holland, 1993.

[35] P. J. Windley. The Formal Verification of
Generic Interpreters. PhD thesis, University of
California , Davis, 1990.

An Overview of SAL�

Saddek Bensalemy Vijay Ganeshz Yassine Lakhnechy Cesar Muñozx Sam Owre{

Harald Rueß{ John Rushby{ Vlad Rusuk Hassen Saı̈di�� N. Shankar{

Eli Singermanyy Ashish Tiwarizz

Abstract

To become practical for assurance, automated for-
mal methods must be made more scalable, automatic,
and cost-effective. Such an increase in scope, scale, au-
tomation, and utility can be derived from an emphasis on
a systematic separation of concerns during verification.
SAL (Symbolic Analysis Laboratory) attempts to address
these issues. It is a framework for combining differ-
ent tools to calculate properties of concurrent systems.
The heart of SAL is a language, developed in collabora-
tion with Stanford, Berkeley, and Verimag, for specifying
concurrent systems in a compositional way. Our instan-
tiation of the SAL framework augments PVS with tools
for abstraction, invariant generation, program analysis
(such as slicing), theorem proving, and model checking
to separate concerns as well as calculate properties (i.e.,
perform symbolic analysis) of concurrent systems. We
describe the motivation, the language, the tools, their
integration in SAL/PVS, and some preliminary experi-
ence of their use.

1 Introduction

To become practical for debugging, assurance, and
certification, formal methods must be made more cost-
effective. Incremental improvements to individual ver-

�This research was performed in the Computer Science Laboratory,
SRI International, Menlo Park CA USA, and supported by DARPA
through USAF Rome Laboratory contract F30602-96-C-0204, by
NASA Langley Research Center contract NAS1-20334, and by the
National Science Foundation contract CCR-9509931.

yVERIMAG, Grenoble, France
zStanford University, Stanford CA
xICASE, NASA Langley, Hampton VA
{Computer Science Laboratory, SRI International, Menlo Park CA
kIRISA, Rennes, France

��Systems Design Laboratory, SRI International, Menlo Park CA
yyIntel, Haifa, Israel
zzSUNY Stony Brook, NY

ification techniques will not suffice. It is our basic
premise that a significant advance in the effectiveness
and automation of verification of concurrent systems is
possible by engineering a systematic separation of con-
cerns through a truly integrated combination of static
analysis, model checking, and theorem proving tech-
niques. A key idea is to change the perception (and im-
plementation) of model checkers and theorem provers
from tools that perform verifications to ones that calcu-
late properties such as slices, abstractions and invariants.
In this way, big problems are cut down to manageable
size, and properties of big systems emerge from those of
reduced subsystems obtained by slicing, abstraction, and
composition. By iterating through several such steps, it
becomes possible to incrementally accumulate proper-
ties that eventually enable computation of a substantial
new property—which in turn enables accumulation of
further properties. By interacting at the level of proper-
ties and abstractions, multiple analysis tools can be used
to derive properties that are beyond the capabilities of
any individual tool.

SAL (Symbolic Analysis Laboratory) addresses
these issues. It is a framework for combining dif-
ferent tools for abstraction, program analysis, theorem
proving, and model checking toward the calculation of
properties (symbolic analysis) of concurrent systems ex-
pressed as transition systems. The heart of SAL is an
intermediate language, developed in collaboration with
Stanford, Berkeley, and Verimag for specifying concur-
rent systems in a compositional way. This language will
serve as the target for translators that extract the tran-
sition system description for popular programming lan-
guages such as Esterel, Java, or Verilog. The intermedi-
ate language also serves as a common description from
which different analysis tools can be driven by translat-
ing the intermediate language to the input format for the
tools and translating the output of these tools back to the
SAL intermediate language.

This paper is structured as follows. In Section 2 we

describe the motivation and rationale behind the design
of the SAL language and give an overview of its main
features. The main part, Section 3, describes SAL com-
ponents including slicing, invariant generation, abstrac-
tion, model checking, simulation, and theorem proving
together with their integration into the SAL toolset. Sec-
tion 4 concludes with some remarks.

2 The SAL Common Intermediate Lan-
guage

Mechanized formal analysis starts from a description
of the problem of interest expressed in the notation of
the tool to be employed. Construction of this descrip-
tion often entails considerable work: first to recast the
system specification from its native expression in C, Es-
terel, Java, SCR, UML, Verilog, or whatever, into the
notation of the tool concerned, then to extract the part
that is relevant to the analysis at hand, and finally to re-
duce it to a form that the tool can handle. If a second tool
is to be employed for a different analysis, then a second
description of the problem must be prepared, with con-
siderable duplication of effort. With m source languages
andn tools, we needm�n translators. This situation nat-
urally suggests use of a common intermediate language,
where the numbers of tools required could be reduced to
m+ n translators.

The intermediate language must serve as a medium
for representing the state transition semantics of a sys-
tem described in a source language such as Java or Es-
terel. It must also serve as a common representation
for driving a number of back-end tools such as theorem
provers and model checkers. A useful intermediate lan-
guage for describing concurrent systems must attempt to
preserve both the structure and meaning of the original
specification while supporting a modular analysis of the
transition system.

For these reasons, the SAL intermediate language is a
rather rich language. In the sequel, we give an overview
of the main features of the SAL type language, the ex-
pression language, the module language, and the con-
text language. For a precise definition and semantics of
the SAL language, including comparisons to related lan-
guages for expressing concurrent systems, see [31].

The type system of SAL supports basic types such
as booleans, scalars, integers and integer subranges,
records, arrays, and abstract datatypes. Expressions
are strongly typed. The expressions consist of con-
stants, variables, applications of Boolean, arithmetic,
and bit-vector operations (bit-vectors are just arrays of
Booleans), and array and record selection and updates.
Conditional expressions are also part of the expression

mutex : CONTEXT =
BEGIN

PC: TYPE = ftrying, criti-
cal, sleepingg

mutex [tval:boolean] : MODULE =
BEGIN
INPUT pc2: PC, x2: boolean
OUTPUT pc1: PC, x1: boolean

INITIALIZATION
TRUE --> pc1 = sleeping;

x1 = tval

TRANSITION
pc1 = sleeping

--> pc1’ = trying;
x1’ = (x2=tval)

[]
pc1 = trying AND
(pc2=sleeping OR x1= (x2/=tval))

--> pc1’ = critical
[]
pc1 = critical

--> pc1’ = sleeping;
x1’ = (x2=tval)

END

system: MODULE =
HIDE x1,x2
(mutex[FALSE]
|| RENAME pc2 TO pc1,

x2 TO x1,
pc1 TO pc2,
x1 TO x2

mutex[TRUE])

mutualExclusion: THEOREM
system |-

AG(NOT(pc1=critical
AND pc2=critical))

eventually1: LEMMA
system |- EF(pc1=critical)

eventually2: LEMMA
system |- EF(pc2=critical)

END

Figure 1. Mutual Exclusion

language and user-defined functions may also be intro-
duced.

A module is a self-contained specification of a tran-
sition system in SAL. Usually, several modules are col-
lected in a context. Contexts also include type and con-
stant declarations. A transition system module consists
of a state type, an initialization condition on this state
type, and a binary transition relation of a specific form
on the state type. The state type is defined by four pair-
wise disjoint sets of input, output, global, and local vari-
ables. The input and global variables are the observed
variables of a module and the output, global, and local
variables are the controlled variables of the module. It
is good pragmatics to name a module. This name can be
used to index the local variables so that they need not be
renamed during composition. Also, the properties of the
module can be indexed on the name for quick lookup.

Consider, for example, the SAL specification of a
variant of Peterson’s mutual exclusion algorithm in Fig-
ure 1. Here the state of the module consists of the
controlled variables corresponding to its own program
counter pc1 and boolean variable x1, and the observed
variables are the corresponding pc2 and x2 of the other
process.

The transitions of a module can be specified variable-
wise by means of definitions or transition-wise by
guarded commands. Henceforth, primed variables X’
denote next-state variables. A definition is of the form
X = f(Y, Z). Both the initializations and transitions
can also be specified as guarded assignments. Each
guarded command consists of a guarded formula and an
assignment part. The guard is a boolean expression in
the current controlled (local, global, and output) vari-
ables and current-state and next-state input variables.
The assignment part is a list of equalities between a left-
hand side next-state variable and a right hand side ex-
pression in both current-state and next-state variables.

Parametric modules allow the use of logical (state-
independent) and type parameterization in the definition
of modules. Module mutex in Figure 1, for example, is
parametric in the Boolean tval. Furthermore, mod-
ules in SAL can be combined by either synchronous
composition ||, or asynchronous composition []. Two
instances of the mutex module, for example, are con-
joined synchronously to form a module called system
in Figure 1. This combination also uses hiding and re-
naming. Output and global variables can be made local
by the HIDE construct. In order to avoid name clashes,
variables in a module can be renamed using the RENAME
construct.

Besides declaring new types, constants, or modules,
SAL also includes constructs for stating module prop-
erties and abstractions between modules. CTL formulas

are used, for example, in Figure 1 to state safety and live-
ness properties about the combined module system.

The form of composition in SAL supports a com-
positional analysis in the sense that any module prop-
erties expressed in linear-time temporal logic or in the
more expressive universal fragment of CTL* are pre-
served through composition. A similar claim holds for
asynchronous composition with respect to stuttering in-
variant properties where a stuttering step is one where
the local and output variables of the module remain un-
changed.

Because SAL is an environment where theorem prov-
ing as well as model checking is available, absence of
causal loops in synchronous systems is ensured by gen-
erating proof obligations, rather than by more restrictive
syntactic methods as in other languages. Consider the
following definitions:

X = IF A THEN NOT Y ELSE C ENDIF
Y = IF A THEN B ELSE X ENDIF

This pair of definitions is acceptable in SAL because we
can prove that X is causally dependent on Y only when
A is true, and vice-versa only when it is false—hence
there is no causal loop. In general, causality checking
generates proof obligations asserting that the conditions
that can trigger a causal loop are unreachable.

3 SAL Components

SAL is built around a blackboard architecture cen-
tered around the SAL intermediate language. Different
backend tools operate on system descriptions in the in-
termediate language to generate properties and abstrac-
tions. The core of the SAL toolset includes the usual
infrastructure for parsing and type-checking. It also al-
lows integration of translators and specialized compo-
nents for computing and verifying properties of transi-
tion systems. These components are loosely coupled
and communicate through well-defined interfaces. An
invariant generator may expect, for example, various ap-
plication specific flags and a SAL base module, and it
generates a corresponding assertion in the context lan-
guage together with a justification of the invariant. The
SAL toolset keeps track of the dependencies between
generated entities, and provides capabilities similar to
proof-chain analysis in theorem proving systems like
PVS.

The main ingredients of the SAL toolset are special-
ized components for computing and verifying properties
of transition systems. Currently, we have integrated var-
ious components providing basic capabilities for analyz-
ing SAL specifications, including

� Validation based on theorem proving, model check-
ing, and animation;

� Abstraction and invariant generation;

� Generation of counterexamples;

� Slicing.

We describe these components in more detail below.

3.1 Backend translations

We have developed translators from the SAL inter-
mediate language to PVS, SMV, and Java for validat-
ing SAL specifications by means of theorem proving
(in PVS), model checking (in SMV), and animation (in
Java). These compilers implement shallow structural
embeddings [26] of the SAL language; that is, SAL
types and expressions are given a semantics with re-
spect to a model defined by the logic of the target lan-
guage. The compilers performs a limited set of semantic
checks. These checks mainly concern the use of state
variables. More complex checks, as for example type
checking, are left to the verification tools.

3.1.1 Theorem Proving: SAL to PVS

PVS is a specification and verification environment
based on higher-order logic [27]. SAL contexts con-
taining definitions of types, constants, and modules, are
translated into PVS theories. This translation yields a se-
mantics for SAL transition systems. Modules are trans-
lated as parametric theories containing a record type to
represent the state type, a predicate over states to rep-
resent the initialization condition, and a relation over
states to represent the transition relation. Figure 2 de-
scribes a typical translation of a SAL module in PVS.
Notice that initializations as well as transitions may be
nondeterministic.

Compositions of modules are embedded as logical
operations on the transition relations of the correspond-
ing modules: disjunction for the case of asynchronous
composition, conjunction for the case of synchronous
composition. Hiding and renaming operations are mod-
eled as morphisms on the state types of the modules.
Logical properties are encoded via the temporal logic of
the PVS specification language.

3.1.2 Model Checking: SAL to SMV

SMV is a popular model checker with its own system
description language [25]. SAL modules are mapped to
SMV modules. Type and constant definitions appearing

module[para:Parameters] : THEORY
BEGIN
State : TYPE = [#

input : InputVars,
output : OutputVars,
local : LocalVars

#]

state,next : VAR State

initialization(state):boolean =
(guard_init_1 AND
output(state) = ... AND
local(state) = ...)

OR ... OR (guard_init_n AND ...)

transitions(state, next):boolean =
(guard_trans_1 AND
output(next) =

output(state) WITH [...]
local(next) =

local(state) WITH [...])
OR ... OR
(guard_trans_m AND ...)
OR
(NOT guard_trans_1 AND ... AND
NOT guard_trans_m AND
output(next) = output(state)
local(next) = local(state))

Figure 2. A SAL module in PVS

in SAL contexts are directly expanded in the SMV spec-
ifications. Output and local variables are translated to
variables in SMV. Input variables are encoded as param-
eters of SMV modules.

The nondeterministic assignment of SMV is used to
capture the arbitrary choice of an enabled SAL transi-
tion. Roughly speaking, two extra variables are intro-
duced. The first is assigned nondeterministically with a
value representing a SAL transition. The guard of the
transition represented by this variable is the first guard
to be evaluated. The second variable loops over all tran-
sitions starting from the chosen one until it finds a tran-
sition which is enabled. This mechanism assures that
every transition satisfying the guard has an equal chance
to being fired in the first place. Composition of SAL
modules and logical properties are directly translated via
the specification language of SMV.

3.1.3 Animation: SAL to Java

Animation of SAL specifications is possible via compi-
lation to Java. However, not all the features of the SAL

language are supported by the compiler. In particular,
the expression language that is supported is limited to
that of Java. For example, only integers and booleans are
accepted as basic types. Elements of enumeration types
are translated as constants and record types are repre-
sented by classes.

The state type of a SAL module is represented by
a class containing fields for the input, output, and lo-
cal variables. In order to simulate the nondeterminism
of the initialization conditions, we have implemented a
random function that arbitrary chooses one of the initial-
ization transition satisfying the guard.

Each transition is translated as a Java thread class.
At execution time, all the threads share the same state
object. We assume that the Java virtual Machine is non-
deterministic with respect to execution of threads. The
main function of the Java translation creates one state
object and passes the object as an argument to the thread
object constructors. It then starts all the threads. Safety
properties are encoded by using the exception mecha-
nism of Java, and are checked at run time.

3.1.4 Case Study: Flight Guidance System

Mode confusion is a concern in aviation safety. It oc-
curs when pilots get confused about the actual states of
the flight deck automation. NASA Langley conducts
research to formally characterize mode confusion situ-
ations in avionics systems. In particular, a prototype
of a Flight Guidance System (FGS) has been selected
a case study for the application of formal techniques to
identify mode confusion problems. FGS has been spec-
ified in various formalisms (see [23] for a comprehen-
sive list of related work). Based on work by Lüttgen
and Carreño, we have developed a complete specifica-
tion of FGS in SAL. The specification has been auto-
matically translated to SMV and PVS, where it has been
analyzed. We did not experience any significant over-
head in model checking translated SAL models com-
pared to hand-coded SMV models. This case study is
available at http://www.icase.edu./˜munoz/
sources.html.

3.2 Invariant Generation

An invariant of a transition system is an assertion—
a predicate on the state—that holds of every reachable
state of the transition system. An inductive invariant is
a assertion that holds of the initial states and is preserved
by each transition of the transition system. An inductive
invariant is also an invariant but not every invariant is
inductive.

Let SP(T ; �) denote the formula that represents the
set of all states that can be reached from any state in �

via a single transition of the system T , and � denote the
formula that denotes the initial states. A formula � is
an inductive invariant for the transition system T if (i)
�! �; (ii) SP(T ; �) ! �.

We recall that for a given transition system T and
a set of states described by formula �, the notation
SP(T ; �) denotes the formula that characterizes all
states reachable from states � using exactly one transi-
tion from T . If � denotes the initial state, then it follows
from the definition of invariants that any fixed-point of
the operator F (�) = SP(T ; �) _� is an invariant.

Notice that the computation of strongest postcondi-
tions introduces existentially quantified formulas. Due
to novel theorem proving techniques in PVS2.3 that are
based on the combination of a set of ground decision
procedures and quantifier elimination we are able to ef-
fectively reason about these formulas in many interest-
ing cases.

It is a simple observation that not only is the greatest
fixed point of the above operator an invariant, but ev-
ery intermediate �i generated in an iterated computation
procedure of greatest fixed point also is an invariant.

�0 : true

�i+1 : SP(T ; �i) _�

A consequence of the above observation is that we do
not need to detect when we have reached a fixed point in
order to output an invariant.

As a technical point about implementation of the
above greatest fixed point computation in SAL, we men-
tion that we break up the (possibly infinite) state space
of the system into finitely many (disjoint) control states.
Thereafter, rather than working with the global invari-
ants �i, we work with local invariants that hold at par-
ticular control states. The iterative greatest fixed point
computation can now be seen as a method of generating
invariants based on affirmation and propagation [6].

Note that rather than computing the greatest fixed
point, if we performed the least fixed point computation,
we would get the strongest invariant for any given sys-
tem. The problem with least fixed points is that their
computation does not converge as easily as those of
greatest fixed points. Unlike greatest fixed points, the
intermediate predicates in the computation of the least
fixed point are not invariants. We are currently investi-
gating approaches based on widening to compute invari-
ants in a convergent manner using least fixed points [8].

The techniques described so far are noncomposi-
tional since they examine all the transitions of the given
system. We use a novel composition rule defined in [29]
allowing local invariants of each of the modules to be
composed into global invariants for the whole system.

This composition rule allows us to generate stronger in-
variants than the invariants generated by the techniques
described in [6,7]. The generated invariants allows us to
obtain boolean abstractions of the analyzed system using
the incremental analysis techniques presented in [29].

3.3 Slicing

Program analyses like slicing can help remove code
irrelevant to the property under consideration from the
input transition system which may result in a reduced
state-space, thus easing the computational needs of sub-
sequent formal analysis efforts. Our slicing tool [18]
accepts an input transition system which may be syn-
chronously or asynchronously composed of multiple
modules written in SAL and the property under verifica-
tion. The property under verification is converted into a
slicing criterion and the input transition system is sliced
with respect to this slicing criterion. The slicing crite-
rion is merely a set of local/output variables of a subset
of the modules in the input SAL program that are not
relevant to the property. The output of the slicing al-
gorithm is another SAL program similarly composed of
modules wherein irrelevant code manipulating irrelevant
variables from each module has been sliced out. For ev-
ery input module there will be an output module, empty
or otherwise. In a nutshell the slicing algorithm does
a dependency analysis of each module and computes
backward transitive closure of the dependencies. This
transitive closure would take into consideration only a
subset of all transitions in the module. We call these
transitions observable and the remaining transitions are
called � or silent transitions. We replace silent transi-
tions with skips.

We are currently investigating reduction techniques
that are simpler than slicing and also ones that are more
aggressive. One example is the cone-of-influence re-
duction where the slicing criterion is a set of variables
V; and the reduction computes a transition system that
includes all the variables in the transitive closure of V
given by the dependencies between variables [21]. In
comparison with slicing, the cone-of-influence reduc-
tion is insensitive to control and is therefore easier to
compute but generally not as efficient at pruning irrele-
vance. Slicing preserves program behavior with respect
to the slicing criterion. One could obtain a more dra-
matic reduction by admitting slices that admitted more
behaviors by introducing nondeterminism. Such aggres-
sive slicing would be needed for example to abstract
away from the internal behavior of a transition system
within its critical section for the purpose of verifying
mutual exclusion. Slicing for concurrent systems with
respect to temporal properties has been investigated by

Dwyer and Hatcliff [16].

3.4 Connecting InVeSt with SAL

So far we have described specialized SAL compo-
nents that provide core features for the analysis of con-
current systems, but we have also integrated the stand-
alone InVeSt [5] into the SAL framework. Besides com-
positional techniques for constructing abstraction and
features for generating counterexamples from failed ver-
ification attempts, InVeSt introduces alternative methods
for invariant generation to SAL. InVeSt not only serves
as a backend tool for SAL but also has been connected
to the IF laboratory [10], Aldebaran [9], TGV [17] and
Kronos [15].

The salient feature of InVeSt is that it combines the
algorithmic with the deductive approaches to program
verification in two different ways. First, it integrates the
principles underlying the algorithmic (e.g. [11, 28]) and
the deductive methods (e.g. [24]) in the sense that it uses
fixed point calculation as in the algorithmic approach but
also the reduction of the invariance problem to a set of
first-order formulas as in the deductive approach. Sec-
ond, it integrates the theorem prover PVS [27] with the
model checker SMV [25] through the automatic com-
putation of finite abstractions. That is, it provides the
ability to automatically compute finite abstractions of
infinite state systems which are then analyzed by SMV
or, alternatively, by the model checker of PVS. Further-
more, InVeSt supports the proof of invariance proper-
ties using the method based on induction and auxiliary
invariants (e.g. [24]) as well as a method based on ab-
straction techniques [2, 12–14, 21, 22]. InVeSt uses PVS
as a backend tool and depends heavily on its theorem
proving capabilities for deciding the myriad verification
conditions.

3.4.1 Abstraction

InVeSt provides also a capability that computes an ab-
stract system from a given concrete system and an ab-
straction function. The method underlying this tech-
nique is presented in [4]. The main features of this
method is that it is automatic and compositional. It com-
putes an abstract system Sa = S1� k � � � k Sn

� , for a
given system S = S1 k � � � k Sn and abstraction func-
tion �, such that S simulates S� is guaranteed by the
construction. Hence, by known preservation results, if
S� satisfies an invariant ' then S satisfies the invari-
ant ��1('). Since the produced abstract system is not
given by a graph but in a programming language, one
still can apply all the known methods for avoiding the
state explosion problem while analyzing S�. Moreover,

it generates an abstract system which has the same struc-
ture as the concrete one. This gives the ability to apply
further abstractions and techniques to reduce the state
explosion problem and facilitates the debugging of the
concrete system. The computed abstract system is op-
tionally represented in the specification language of PVS
or in that of SMV.

The basic idea behind our method of computing ab-
stractions is simple. In order to construct an abstrac-
tion of S, we construct for each concrete transition �c
an abstract transition �a. To construct �a we proceed by
elimination starting from the universal relation, which
relates every abstract state to every abstract state, and
eliminate pairs of abstract states in a conservative way,
that is, it is guaranteed that after elimination of a pair the
obtained transition is still an abstraction of �c. To check
whether a pair (a; a0) of abstract states can be eliminated
we have to check that the concrete transition �c does not
lead from any state c with �(c) = a to any state c0 with
�(c0) = a0. This amounts to proving a Hoare triple. The
elimination method is in general too complex. There-
fore, we combine it with three techniques that allow
many fewer Hoare triples to be checked. These tech-
niques are based on partitioning the set of abstract vari-
ables, using substitutions, and a new preservation result
which allows to use the invariant to be proved during the
construction process of the abstract system.

We implemented our method using the theorem
prover PVS [27] to check the Hoare triples generated by
the elimination method. The first-order formulas corre-
sponding to these Hoare triples are constructed automat-
ically and a strategy that is given by the user is applied.
In [1] we developed also a general analysis methodol-
ogy for heterogeneous infinite-state models, extended
automata operating on variables which may range over
several different domains, based on combining abstrac-
tion and symbolic reachability analysis.

3.4.2 Generation of Invariants

There are two different way to generate invariants in
InVeSt. First, we use calculation of pre-fixed points
by applying the body of the backward procedure a fi-
nite number of times and use techniques for the auto-
matic generation of invariants (cf. [3]) to support the
search for auxiliary invariants. The tool provides strate-
gies which allow derivation of local invariants, that is,
predicates attached to control locations and which are
satisfied whenever the computation reaches the corre-
sponding control point. InVeSt includes strategies for
deriving local invariants for sequential systems as well
as a composition principle that allows combination of
invariants generated for sequential systems to obtain in-

variants of a composed system. Consider a composed
system S1 k S2 and control locations l1 and l2 of S1
and S2, respectively. Suppose that we generated the lo-
cal invariants P1 and P2 at l1 and l2, respectively. Let us
call Pi interference independent, if Pi does not contain a
free variable that is written by Sj with j 6= i. Then, de-
pending on whether Pi is interference independent we
compose the local invariants P1 and P2 to obtain a lo-
cal invariant at (l1; l2) as follows: if Pi is interference
independent, then we can affirm that P i is an invariant
at (l1; l2) and if both P1 and P2 are interference depen-
dent, then P1_P2 is an invariant at (l1; l2). This compo-
sition principle proved to be useful in the examples we
considered. However, examples showed that predicates
obtained by this composition principle can become very
large. Therefore, we also consider the alternative option
where local invariants are not composed until they are
needed in a verification condition. Thus, we assign to
each component of the system two lists of local invari-
ants. The first corresponds to interference independent
local invariants and the second to interference dependent
ones. Then, when a verification condition is considered,
we use heuristics to determine which local invariants are
useful when discharging the verification condition. A
useful heuristic concerns the case when the verification
condition is of the form (pc(1) = l1 ^ pc(2) = l2)) �,
where pc(1) = l1 ^ pc(2) = l2 asserts that computation
is at the local control locations l1 and l2. In this case, we
combine the local invariants associated to l1 and l2 and
add the result to the left hand side of the implication.

Second, we use abstraction generating invariants at
the concrete level: Let S�1 the result of the abstrac-
tion of a concrete system S, the set of reachable states
denoted by Reach(S�1) is an invariant of S�1 (the
strongest one including the initial configurations in fact).
We developed a method that extract the formula which
characterizes the reachable states from the BDD. Hence,
��11 (Reach(S�1)) is an invariant of the concrete model
S. This invariant can be used to strengthen ' and show
that it is an invariant of S.

3.4.3 Analysis of Counterexamples

The generation of the abstract system is completely au-
tomatic and compositional as we consider transition by
transition. Thus, for each concrete transition we obtain
an abstract transition (which might be nondeterministic).
This is a very important property of our method, since it
enables the debugging of the concrete system or alter-
natively enhancing the abstraction function. Indeed, the
constructed abstract system may not satisfy the desired
property, for three possible reasons:

1. The concrete system does not satisfy the invariant,

2. The abstraction function is not suitable for proving
the invariant, or

3. The proof strategies provided are too weak.

Now, a model checker such as SMV provides a trace as
a counterexample, if the abstract system does not satisfy
the abstract invariant. Since we have a clear correspon-
dence between abstract and concrete transitions, we can
examine the trace and find out which of the three rea-
sons listed above is the case. In particular if the concrete
system does not satisfy the invariant then we can trans-
form the trace given by SMV to a concrete trace, thus
generating a concrete counterexample.

3.5 Predicate/Boolean Abstraction

In addition to the InVeSt abstraction mechanisms, we
implemented boolean abstraction of SAL specifications.
We use the boolean abstraction scheme defined in [19]
that uses predicates over concrete variables as abstract
variables to abstract infinite or large state systems into
finite state systems analyzable by model checking. The
advantage of using boolean abstractions can be summa-
rized as follows:

� Any abstraction to a finite state system can be ex-
pressed as a boolean abstraction.

� The abstract transition relation can be repre-
sented symbolically using Binary Decision Dia-
gram (BDDs). Thus, efficient symbolic model
checking [25] can be effectively applied.

� We have defined in [30] an efficient algorithm for
the construction of boolean abstractions. We also
designed an efficient refinement technique that al-
lows us to refine automatically an already con-
structed abstraction until the property of interest is
proved or a counter-example is generated.

� Abstraction followed by model checking and suc-
cessive refinement is an efficient and more pow-
erful alternative to invariant generation techniques
such as the ones presented in [6, 7].

3.5.1 Automatic Construction of Boolean Abstrac-
tions

The automatic abstraction module takes as input a SAL
basemodule and a set of predicates defining the boolean
abstraction. Using the algorithm in [30] we automati-
cally construct the corresponding abstract transition sys-
tem. This process relies heavily on the PVS decision
procedures.

...
INPUT x: integer
OUTPUT y, z: integer

INITIALIZATION
TRUE --> INIT(x) = 0;

INIT(y) = 0;
INIT(z) = y;

TRANSITION
NOT(x > 0) --> y’ = y + 1
[] z > 0 --> z’ = y - 1, y’ = 0

...

Figure 3. Concrete Module.

Figure 3 and 4 display a simple SAL module and its
abstraction where the boolean variables B1, B2 and B3
correspond to the predicates x > 0, y > 0, and z > 0.
Notice that the assignment to B3 is nondeterministically
chosen from the set fTRUE, FALSEg.

...
INPUT B1: boolean
OUTPUT B2,B3: boolean

INITIALIZATION
TRUE --> INIT(B1) = FALSE;

INIT(B2) = FALSE;
INIT(B3) = FALSE;

TRANSITION
NOT(B1) --> B2’=F

[] B3 --> B2’=T, B3’= f TRUE, FALSE g
...

Figure 4. Abstract Module.

3.5.2 Explicit Model Checking

Finite-state SAL modules can be translated to SMV for
model checking as explained above. However, model
checkers usually do not allow to access their internal
data structures where intermediate computation steps of
the model-checking process can be exploited. For this
reason, we implemented an efficient explicit-state model
checker for SAL systems obtained by boolean abstrac-
tion. The abstract SAL description is translated into
an executable Lisp code that performs the explicit state
model checking procedure allowing us to explore about

twenty thousand states a second. This procedure builds
an abstract state graph that can be exploited for further
analysis. Furthermore, additional abstractions can be
applied on the fly while the abstract state graph is be-
ing built.

3.5.3 Automatic Refinement of Abstractions

When model checking fails to establish the property of
interest, we use the results developed in [29, 30] to de-
cide whether the constructed abstraction is too coarse
and needs to be refined, or that the property is violated
in the concrete system and that the ge nerated counter-
example corresponds indeed to an execution of the con-
crete system violating the property. This is done by ex-
amining the generated abstract state graph. The refine-
ment technique computes the precondition to a transition
where nondeterministic assignments occur. The precon-
ditions corresponding to the cases where the variables
get either TRUE or FALSE define two predicates that are
used as new abstract variables. The following transition
from the example

B3 --> B2’=TRUE, B3’= fTRUE, FALSEg

can be automatically refined to

B3 --> B2’=TRUE, B3’=B4 ,
B4’=FALSE, B5’ = FALSE

where B4 and B5 correspond to the predicates y=1 and
y>1, respectively.

4 Conclusions

SAL is a tool that combines techniques from static
analysis, model checking, and theorem proving in a truly
integrated environment. Currently, its core is realized as
an extension of the PVS system and has a well-defined
interface for coupling specialized analysis tools. So
far, we have been focusing on developing and connect-
ing back-end tools for validating SAL specifications by
means of animation, theorem proving, and model check-
ing, and also for computing abstractions, slices, and in-
variants of SAL modules. There are as yet no automated
translators into the SAL language. Primary candidates
are translators for source languages such as Java, Ver-
ilog, Esterel, Statecharts, or SDL. Since SAL is an open
system with well-defined interfaces, however, we hope
others will write those if the rest of the system proves
effective.

We are currently completing the implementation of
the SAL prototype which includes a parser, typechecker,
a slicer, an invariant generator, the connection to InVeSt,

and translators to SMV and PVS. We expect to release
the prototype SAL system in mid-2000.

Although our experience with the combined power of
several forms of mechanized formal analysis in the SAL
system is still rather limited, we predict that proofs and
refutations of concurrent systems that currently require
significant human effort will soon become routine cal-
culations.

References

[1] P. A. Abdulla, A. Annichini, S. Bensalem, A. Bouajjani,
P. Habermehl, and Y. Lakhnech. Verification of infinite-
state systems by combining abstraction and reachability
analysis. In Halbwachs and Peled [20], pages 146–159.

[2] S. Bensalem, A. Bouajjani, C. Loiseau, and J. Sifakis.
Property preserving simulations. In G. v. Bochmann and
D. K. Probst, editors, Computer Aided Verification’92,
volume 663 of LNCS, pages 260–273. Springer-Verlag,
1992.

[3] S. Bensalem and Y. Lakhnech. Automatic generation of
invariants. Formal Methods in System Design, 15(1):75–
92, July 1999.

[4] S. Bensalem, Y. Lakhnech, and S. Owre. Computing
abstractions of infinite state systems automatically and
compositionally. In A. J. Hu and M. Y. vardi, editors,
Computer Aided Verification, volume 1427 of LNCS,
pages 319–331. Springer-Verlag, 1998.

[5] S. Bensalem, Y. Lakhnech, and S. Owre. InVeSt: A
tool for the verification of invariants. In A. J. Hu and
M. Y. vardi, editors, Computer Aided Verification, vol-
ume 1427 of LNCS, pages 505–510. Springer-Verlag,
1998.

[6] S. Bensalem, Y. Lakhnech, and H. Saı̈di. Powerful tech-
niques for the automatic generation of invariants. In
R. Alur and T. A. Henzinger, editors, Computer-Aided
Verification, CAV ’96, volume 1102 of Lecture Notes in
Computer Science, pages 323–335, New Brunswick, NJ,
July/Aug. 1996. Springer-Verlag.

[7] N. Bjørner, I. A. Browne, and Z. Manna. Automatic gen-
eration of invariants and intermediate assertions. Theo-
retical Computer Science, 173(1):49–87, 1997.

[8] F. Bourdoncle. Efficient chaotic iteration strategies with
widenings. In D. Bjørner, M. Broy, and I. V. Pottosin,
editors, Proceedings of the International Conference on
Formal Methods in Programming and their Applica-
tions, pages 128–141, 1993. Vol. 735 of Lecture Notes
in Computer Science, Springer-Verlag.

[9] M. Bozga, J. Fernandez, A. Kerbrat, and L. Mounier.
Protocol verification with the Aldebaran toolset. Soft-
ware Tools and Technology Transfer journal, 1998.

[10] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf,
J. Krimm, and L. Mounier. IF: An Intermediate Repre-
sentation and Validation Environment for Timed Asyn-
chronous Systems. In Proceedings of FM’99, Toulouse,
France, LNCS, 1999.

[11] E. Clarke, E. Emerson, and E. Sistla. Automatic verifi-
cation of finite state concurrent systems using temporal
logic specifications: A practical approach. In 10th ACM
symp. of Prog. Lang. ACM Press, 1983.

[12] E. Clarke, O. Grumberg, and D. Long. Model check-
ing and abstraction. ACM Transactions on Programming
Languages and Systems, 16(5), 1994.

[13] D. Dams. Abstract interpretation and partition refine-
ment for model checking. PhD thesis, Technical Univer-
sity of Eindhoven, 1996.

[14] D. Dams, R. Gerth, and O. Grumberg. Abstract in-
terpretation of reactive systems: Abstractions preserv-
ing ACTL�, ECTL� and CTL�. In Proceedings of the
IFIP WG2.1/WG2.2/WG2.3 (PROCOMET). IFIP Trans-
actions, North-Holland/Elsevier, 1994.

[15] C. Daws, A. Olivero, and S. Yovine. Verifying ET-
LOTOS programs with KRONOS. In Proc. FORTE’94,
Berne, Switzerland, Oct. 1994.

[16] M. B. Dwyer and J. Hatcliff. Slicing software for model
construction. In Proceedings of ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Pro-
gram Manipulation (PEPM’99), Jan. 1999.

[17] J.-C. Fernandez, C. Jard, T. Jéron, L. Nedelka, and
C. Viho. Using on-the-fly verification techniques for the
generation of test suites. In R. Alur and T. A. Henzinger,
editors, Proceedings of the 8th International Confer-
ence on Computer-Aided Verification (Rutgers Univer-
sity, New Brunswick, NJ, USA), volume 1102 of LNCS.
Springer Verlag, 1996. Also available as INRIA Re-
search Report RR-2987.

[18] V. Ganesh, H. Saı̈di, and N. Shankar. Slicing SAL. Draft,
1999.

[19] S. Graf and H. Saı̈di. Construction of abstract state
graphs with PVS. In Conference on Computer Aided
Verification CAV’97, LNCS 1254, Springer Verlag,
1997.

[20] N. Halbwachs and D. Peled, editors. Computer-Aided
Verification, CAV ’99, volume 1633 of Lecture Notes in
Computer Science, Trento, Italy, July 1999. Springer-
Verlag.

[21] R. Kurshan. Computer-Aided Verification of Coordinat-
ing Processes, the automata theoretic approach. Prince-
ton Series in Computer Science. Princeton University
Press, 1994.

[22] D. E. Long. Model Checking, Abstraction, and Compo-
sitional Reasoning. PhD thesis, Carnegie Mellon, 1993.

[23] G. Lüttgen and V. Carreño. Analyzing mode confusion
via model checking. In D. Dams, R. Gerth, S. Leue,
and M. Massink, editors, Theoretical and Practical As-
pects of SPIN Model Checking (SPIN ’99), volume 1680
of Lecture Notes in Computer Science, pages 120–135,
Toulouse, France, September 1999. Springer-Verlag.

[24] Z. Manna and A. Pnueli. Temporal Verification of Reac-
tive Systems: Safety. Springer-Verlag, 1995.

[25] K. McMillan. Symbolic model checking. Kluwer Aca-
demic Publishers, Boston, 1993.

[26] C. Muñoz and J. Rushby. Structural embeddings: Mech-
anization with method. In Proceedings of the World
Congress on Formal Methods FM 99, volume 1708 of
LNCS, pages 452–471, 1999.

[27] S. Owre, J. Rushby, N. Shankar, and F. von Henke. For-
mal verification for fault-tolerant architectures: Prole-
gomena to the design of PVS. IEEE Transactions on
Software Engineering, 21(2):107–125, Feb. 1995.

[28] J. P. Queille and J. Sifakis. Specification and verification
of concurrent systems in CESAR. In Proc. 5th Int. Sym.
on Programming, volume 137 of LNCS, pages 337–351.
Springer-Verlag, 1982.

[29] H. Saı̈di. Modular and incremental analysis of concur-
rent software systems. In 14th IEEE International Con-
ference on Automated Software Engineering, Oct. 1999.

[30] H. Saı̈di and N. Shankar. Abstract and model check
while you prove. In Halbwachs and Peled [20], pages
443–454.

[31] The SAL Group. The SAL intermediate language. Avail-
able at: http://sal.csl.sri.com/, 1999.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2000
3. REPORT TYPE AND DATES COVERED

Conference Publication
4. TITLE AND SUBTITLE

Lfm2000: Fifth NASA Langley Formal Methods Workshop
5. FUNDING NUMBERS

WU 519-50-11-01

6. AUTHOR(S)
C. Michael Holloway, Compiler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

 L-17985

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CP-2000-210100

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category 61 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This is the proceedings of Lfm2000: Fifth NASA Langley Formal Methods Workshop. The workshop was held
June 13-15, 2000, in Williamsburg, Virginia. See the web site <http://shemesh.larc.nasa.gov/lfm2000/> for
complete information about the event.

14. SUBJECT TERMS
Formal Methods, Software Engineering, Proof, Model Checking, Safety

15. NUMBER OF PAGES
209

 16. PRICE CODE
A10

17. SEC U RITY CL ASSIF IC AT ION
O F REPO R T
Unclassified

18. SEC U RITY CL ASSIF IC AT ION
O F TH IS PA GE
Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT
Unclassified

20. LIMITATION
 OF ABSTRACT
 UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z-39-18
298-102

